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CONTEXT AND OBJECTIVES

Reliable optical flow is crucial for many vision tasks related to navigation or
planning. Deep neural networks achieve state-of-the-art performance on the
problem of optical flow estimation. We would like to have a tool to indicate the
reliability of optical flow which is the uncertainty estimator for optical flow.

• In this work we aim to quantify epistemic uncertainty for optical flow by
using existing approaches.

• We use two different evaluation tools to measure the performance of
uncertainty estimators, one is for the uncertainty ordering, one is for
regression calibration degree.

• Our work gives insights on optical flow uncertainty calibration problem
and the trade-offs which occur depending on the considered uncertainty
estimation frameworks.

Fig. 1: Demonstration of optical flow prediction and one of its uncertainty estimation. We use FlowNetS
[Dos+15] trained on the FlyingChairs [Dos+15] dataset and tested on KITTI [MG15] training set. The
uncertainty map is made by MC Dropout [GG16] as an example.

DEEP NEURAL NETWORK AND UNCERTAINTY ESTIMATION
• MC Dropout [GG16]: aim to find the posterior distribution of the parameters given the training dataset P (Θ | D), not only the values corresponding to the

MAP. To make a prediction y on a new sample x the BNN compute : P (y | x,D) =
∫
P (y | x,Θ)P (Θ | D)dΘ. We set Dropout layers in the model and do

multiple forward propagations and calculate the variance among the inferences.

• Deep Ensembles[LPB17]: Train multiple deep neural networks to have access to their uncertainty. Each of the networks optimizes a heteroscedastic
uncertainty loss [KG17] which considers that the output of optical flow model is a Gaussian distribution, the mean is the flow prediction and the variance
is the uncertainty. Finally we combine the variances to get the final uncertainty.

• Kullback-Leibler divergence: The ground-truth that we want to match is a Gaussian distribution of mean the optical flow and of variance the square
error of the optical flow. This loss aims to see if KL is more suitable than the previous heteroscedastic loss used in deep ensembles.

• L2 regression: a simple strategy using regression with means squared error loss. The trained variance is targeting the square error of the flow prediction.

UNCERTAINTY EVALUATION METHODS
• Sparsification Curve [Ilg+18]: is a kind of Accuracy-Rejection Curve. It is

a relative quality indicator: it reports the correctness of relative uncertainty
ordering of the observed pixels with respect to the ideal ordering.

• Calibration Curve[KFE18]: has not yet been employed for optical flow
analysis, is an absolute quality indicator, and it underlines the correlation
between the expected confidence level taking into account the ground-
truth and the confidence level reported by the variance estimator. The
uncertainty estimation should be wider enough to cover the error zone
confidently but also as sharp as possible.

SEQUENTIAL TRAINING FOR UNCERTAINTY

Fig. 2: We use a pre-trained and frozen optical flow model to make flow estimations and feed them to the
loss to train the uncertainty estimator. Solid line: forward propagate; Dotted line: backward propagate;
Black line: Procedure only during training; Green line: Procedure during inferring and training.

EXPERIMENTAL RESULTS
We train a FlowNetS [Dos+15] on FlyingChairs [Dos+15] for its flow and uncertainty predictions in combining with different uncertainty estimation approaches (MC: MC
Dropout; L2: L2 regression targeting square error; KL: KL-divergence; EDEi/PDEi: empirical/predictive deep ensembles with i samples) by using sequential training.
Then we evaluate the performance of different approaches on KITTI[MG15] without fine-tuning on it.

Curve Type Calibration Error Sparsification Error Run
time
(ms)

Noise Type Gaussian Noise Motion Blur Gaussian Noise Motion Blur
Method Name AUC RC AUC RC AUC RC AUC RC
MC 1.0191 0.0171 0.9763 0.0206 0.5102 0.0406 0.4232 0.0137 196
L2 0.8158 0.0059 0.8241 0.0122 1.5801 0.2759 1.7393 0.3513 32
KL 1.0139 0.0148 1.0139 0.0327 0.9577 0.0398 0.8051 0.0696 32
PDE1 0.9719 0.0111 0.9559 0.0150 1.4238 0.0536 1.2272 0.0366 32
EDE2 1.0604 0.0192 0.9689 0.0264 1.0397 0.1044 1.1384 0.1331 69
PDE2 0.9704 0.0209 0.9182 0.0189 0.8721 0.0512 0.8432 0.0438 66
EDE3 1.0330 0.0128 0.9520 0.0304 0.7112 0.0868 0.7016 0.0815 99
PDE3 0.9529 0.0143 0.9146 0.0146 0.7763 0.0465 0.7001 0.0183 101
EDE4 1.0133 0.0126 0.9262 0.0265 0.6370 0.0751 0.5860 0.0598 131
PDE4 0.9449 0.0117 0.8985 0.0185 0.7264 0.0431 0.6370 0.0216 136
EDE5 1.0297 0.0153 0.9357 0.0297 0.8901 0.1549 0.7961 0.1343 165
PDE5 0.9691 0.0157 0.9106 0.0150 0.8826 0.1021 0.8241 0.0894 172

Table. 1: Area under the curve (AUC) and rate of change of the curve (RC) for the calibration error
and sparsification error curves. Subscript number of the method: the number of models used in
ensembles; Bold values: the best ones; Red values: the worst ones. Run time: time consumption
for outputting mean and variance, the test is executed on 1 NVIDIA TITAN RTX.

Fig. 3: Uncertainty visualizations for different estimation methods. To visualize the uncertainties we combine
the variance from two channels based on our hypothesis, and we use the entropy of a Gaussian distribution.
For the joint visualization, all entropies are re-scaled using the maximum value among them.

CONCLUSIONS
• In-depth characterization of current most popular techniques for uncertainty estimation applied to optical flow.
• Proposal of a new plug-in training technique, loss and criteria.
• Support for transferring a model trained on synthetic data and applied in real-world, diverse settings.
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