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Patrice	Simard		
Microsoft	Research	AI	Lab,	Redmond,	United	States	of	America	
	
	
Talk:	Machine	Learning	--	What’s	next?	
	
	
Abstract:	
	
For	many	Machine	Learning	(ML)	problems,	labeled	data	is	readily	available.	When	this	is	the	case,	
algorithms	and	training	time	are	the	performance	bottleneck.	This	is	the	ML	researcher’s	paradise!	
Vision	and	Speech	are	good	examples	of	such	problems	because	they	have	a	stable	distribution	and	
additional	human	labels	can	be	collected	each	year.	Problems	that	extract	their	labels	from	history,	
such	as	click	prediction,	data	analytics,	and	forecasting	are	also	blessed	with	large	numbers	of	labels.	
Unfortunately,	there	are	only	a	few	problems	for	which	we	can	rely	on	such	an	endless	supply	of	free	
labels.	They	receive	a	disproportionally	large	amount	of	attention	from	the	media.	
	
We	are	interested	in	tackling	the	much	larger	class	of	ML	problems	where	labeled	data	is	sparse.	For	
example,	consider	a	dialog	system	for	a	specific	app	to	recognize	specific	commands	such	as	“lights	
on	 first	 floor	 off”,	 “increase	 spacing	 between	 2nd	 and	 3rd	 paragraph”,	 “make	 doctor	 appointment	
after	Hawaii	vacation”.	Anyone	who	has	attempted	building	such	a	system	has	soon	discovered	that	
generalizing	to	new	instances	from	a	small	custom	set	of	labeled	instances	is	far	more	difficult	than	
they	 originally	 thought.	 Each	 domain	 has	 its	 own	 generalization	 challenges,	 data	 exploration	 and	
discovery,	 custom	 features,	 and	 decomposition	 structure.	 Creating	 labeled	 data	 to	 communicate	
custom	knowledge	is	inefficient.	It	also	leads	to	embarrassing	errors	resulting	from	over-training	on	
small	sets.	ML	algorithms	and	processing	power	are	not	a	bottleneck	when	labeled	data	is	scarce.	The	
bottleneck	is	the	teacher	and	the	teaching	language.	
	
To	address	 this	problem,	we	 change	our	 focus	 from	 the	 learning	algorithm	 to	 teachers.	We	define	
“Machine	Teaching”	 as	 improving	 the	 human	productivity	 given	 a	 learning	 algorithm.	 If	ML	 is	 the	
science	 and	 engineering	 of	 extracting	 knowledge	 from	 data,	 Machine	 Teaching	 is	 the	 science	 and	
engineering	 of	 extracting	 knowledge	 from	 teachers.	 A	 similar	 shift	 of	 focus	 has	 happened	 in	
computer	science.	While	computing	is	revolutionizing	our	lives,	systems	sciences	(e.g.,	programming	
languages,	operating	systems,	networking)	have	shifted	their	foci	to	human	productivity.	We	expect	a	
similar	trend	will	shift	science	from	Machine	Learning	to	Machine	Teaching.	
	
The	aim	of	this	talk	is	to	convince	the	audience	that	we	are	asking	the	right	questions.	We	provide	
some	 answers	 and	 some	 spectacular	 results.	 The	 most	 exciting	 part,	 however,	 is	 the	 research	
opportunities	that	come	with	the	emergence	of	a	new	field.	
	
	
	
	



	

	
Bio:	
	
Patrice	 Simard	 is	 a	 Distinguished	 Engineer	 in	 the	 Microsoft	 Research	 AI	 Lab	 in	 Redmond.	 He	 is	
passionate	about	finding	new	ways	to	combine	engineering	and	science	in	the	field	of	machine	learning.	
Simard’s	research	is	currently	focused	on	human	teachers.	His	goal	is	to	extend	the	teaching	language,	
science,	and	engineering,	beyond	the	traditional	(input,	label)	pairs.	Simard	completed	his	PhD	thesis	in	
Computer	 Science	 at	 the	 University	 of	 Rochester	 in	 1991.	 He	 then	 spent	 8	 years	 at	 AT&T	 Bell	
Laboratories	working	on	neural	networks.	He	 joined	Microsoft	Research	 in	1998.	 In	2002,	he	 started	
MSR’s	 Document	 Processing	 and	Understanding	 research	 group.	 In	 2006,	 he	 left	MSR	 to	 become	 the	
Chief	 Scientist	 and	General	Manager	of	Microsoft’s	 Live	Labs	Research.	 In	2009,	 he	became	 the	Chief	
Scientist	of	Microsoft’s	AdCenter	(the	organization	that	monetizes	Bing	search).	In	2012,	he	returned	to	
Microsoft	 Research	 to	 work	 on	 his	 passion,	 Machine	 Learning	 research.	 Specifically,	 he	 founded	 the	
Computer-Human	Interactive	Learning	(CHIL)	group	to	study	Machine	Teaching	and	to	make	machine	
learning	accessible	to	everyone.	
	
	 	



	

	
	
Juliana	Freire		
	
Professor	 of	 Computer	 Science	 and	 Engineering	 and	 Data	 Science	 Executive	 Director,	
NYU	Moore-Sloan	Data	Science	Environment,	United	States	of	America	
	
	
Talk:	Democratizing	Urban	Data	Exploration	
	
	
Abstract:	
	
The	 large	 volumes	 of	 urban	 data,	 along	 with	 vastly	 increased	 computing	 power,	 open	 up	 new	
opportunities	 to	 better	 understand	 cities.	 Encouraging	 success	 stories	 show	 that	 data	 can	 be	
leveraged	to	make	operations	more	efficient,	inform	policies	and	planning,	and	improve	the	quality	
of	life	for	residents.	However,	analyzing	urban	data	often	requires	a	staggering	amount	of	work,	from	
identifying	relevant	data	sets,	cleaning	and	integrating	them,	to	performing	exploratory	analyses	and	
creating	 predictive	models	 that	must	 take	 into	 account	 spatio-temporal	 processes.	 Our	 long-term	
goal	 is	to	enable	domain	experts	to	crack	the	code	of	cities	by	freely	exploring	the	vast	amounts	of	
urban	 data.	 In	 this	 talk,	 we	 will	 present	 methods	 and	 systems	 that	 combine	 data	 management,	
analytics,	and	visualization	 to	 increase	 the	 level	of	 interactivity,	 scalability,	and	usability	 for	urban	
data	exploration.	
	
	
Bio:	
	
Juliana	 Freire	 is	 a	 Professor	 of	 Computer	 Science	 and	 Engineering	 and	 Data	 Science	 at	 New	 York	
University.	 She	 holds	 an	 appointment	 at	 the	 Courant	 Institute	 for	Mathematical	 Science,	 is	 a	 faculty	
member	 at	 the	 NYU	 Center	 for	 Urban	 Science	 and	 at	 the	 NYU	 Center	 of	 Data	 Science.	 She	 is	 the	
executive	director	of	the	NYU	Moore-Sloan	Data	Science	Environment,	chair	of	the	ACM	SIGMOD	and	a	
council	member	of	 the	Computing	Community	Consortium	 (CCC).	Her	 recent	 research	has	 focused	on	
big-data	 analysis	 and	 visualization,	 large-scale	 information	 integration,	 web	 crawling	 and	 domain	
discovery,	 provenance	 management,	 and	 computational	 reproducibility.	 Prof.	 Freire	 is	 an	 active	
member	of	the	database	and	Web	research	communities,	with	over	170	technical	papers,	several	open-
source	systems,	and	12	U.S.	patents.	She	is	an	ACM	Fellow	and	a	recipient	of	an	NSF	CAREER,	two	IBM	
Faculty	awards,	and	a	Google	Faculty	Research	award.	She	has	chaired	or	co-chaired	workshops	and	
conferences,	and	participated	as	a	program	committee	member	in	over	70	events.	Her	research	grants	
are	from	the	National	Science	Foundation,	DARPA,	Department	of	Energy,	National	Institutes	of	Health,	
Sloan	Foundation,	Gordon	and	Betty	Moore	Foundation,	W.	M.	Keck	Foundation,	Google,	Amazon,	AT&T,	
the	University	of	Utah,	New	York	University,	Microsoft	Research,	Yahoo!	and	IBM.	
	
	
	
	
	



	

	
Christine	Balagué		
Professor	 at	 Institut	 Mines	 Telecom	 Business	 School,	 Titulaire	 de	 la	 Chaire	 Réseaux	
Sociaux,	France	
	

	
Talk:	Enjeux	éthiques	et	responsabilité	des	technologies		
	
	
Abstract:	
	
Les	 technologies	 d'intelligence	 artificielle	 et	 les	 usages	 croissants	 des	 systèmes	 algorithmiques	
impactent	la	vie	quotidienne	des	individus	et	nos	sociétés.	
	
En	 2018,	 la	 révolution	 digitale	 s’est	 retrouvée	 au	 cœur	 de	 nombreux	 débats	 sociétaux,	 le	 clivage	
devenant	 plus	 marqué	 entre	 des	 représentations	 de	 la	 technologie	 très	 positives	 d’une	 part	 et	
d’autres	plus	fermement	négatives.	
	
Ces	débats	sont	liés	aux	enjeux	éthiques	qu'engendrent	le	développement	massif	des	technologies	et	
leurs	usages	dans	nos	sociétés.	Les	modèles	dominants	sont	portés	par	les	Etats-Unis	et	la	Chine	et	
portent	des	valeurs	profondément	différentes	de	celles	qui	ont	crée	l'Europe.	Nous	discuterons	dans	
cet	 exposé	 les	 différents	 enjeux	 éthiques	 des	 technologies,	 depuis	 la	 recherche	 jusqu'aux	
applications,	ainsi	que	des	pistes	futures	permettant	de	développer	un	modèle	plus	responsable	des	
technologies.		
	
	
Bio:	
	
Christine	Balagué	est	Professeur	et	Titulaire	de	la	Chaire	réseaux	sociaux	et	objets	connectés	à	l’Institut	
Mines-Télécom	Business	School,	et	a	été	Vice-présidente	du	Conseil	National	du	Numérique	de	2013	à	
2015.	 Ses	 recherches	 portent	 sur	 la	 modélisation	 du	 comportement	 des	 individus	 connectés,	 en	
particulier	sur	les	réseaux	sociaux	et	avec	des	objets	connectés.	Elle	est	également	membre	de	la	CERNA	
(Comité	d’Ethique	de	la	Recherche	sur	le	Numérique	d’Allistène)	et	de	l’Institut	de	Convergences	DATAIA	
sur	 les	 sciences	 de	 données	 et	 l’intelligence	 artificielle.	 En	 tant	 que	 VP	 du	 Conseil	 National	 du	
Numérique,	 elle	 a	 participé	 à	 différents	 travaux	 remis	 au	 gouvernement	 français	 sur	 les	 grandes	
questions	 du	 numérique	 (Neutralité	 du	 Net,	 Neutralité	 des	 plateformes,	 E-inclusion,	 E-éducation,	 E-
santé,	concertation	nationale).	Elle	est	également	l’auteur	de	nombreux	ouvrages	sur	le	développement	
de	l’Internet	en	France	et	sur	les	réseaux	sociaux.	Habilitée	à	Diriger	des	Recherches,	Christine	Balagué	
est	docteur	en	Sciences	de	Gestion,	diplômée	de	l’ESSEC	et	d’un	Master	d’économétrie	à	l’ENSAE.	
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Thermodynamics of Restricted Boltzmann
Machines

[Talk submission]

A. Decelle1, G. Fissore1,2, and C. Furtlehner2

1LRI, AO team, Bât 660 Université Paris Sud, Orsay Cedex 91405
2Inria Saclay - Tau team, Bât 660 Université Paris Sud, Orsay Cedex 91405

Abstract. The Restricted Boltzmann Machine (RBM), an important
tool used in machine learning in particular for unsupervized learning
tasks, is investigated from the perspective of its spectral properties.
Starting from empirical observations, we propose a generic statistical
ensemble for the weight matrix of the RBM and characterize its mean
evolution. This let us show how in the linear regime, in which the RBM
is found to operate at the beginning of the training, the statistical prop-
erties of the data drive the selection of the unstable modes of the weight
matrix. A set of equations characterizing the non-linear regime is then
derived, unveiling in some way how the selected modes interact in later
stages of the learning procedure and defining a deterministic learning
curve for the RBM. Finally, the analysis of a realistic RBM ensemble let
us show how the model is found to operate in a compositional phase.

Keywords: Unsupervised learning, Generative models, Restricted Boltzmann Ma-
chine, Statistical physics, singular value decomposition

1 Motivation

In the last years progresses in machine learning have led to spectacular applications
in many fields such as computer vision, image classification and speech recognition,
giving results that were believed to be decades away [1]. While the practical applica-
tions are of tangible impact, however, our theoretical understanding of the models in
use is poor. From this point of view, unsupervised learning presents specific challenges
different from those of supervised learning, the former being the problem of automati-
cally extracting structure from data while the latter refers to the ability to learn a rule
that maps data to their appropriate labels. What we are interested in is the matter of
automatically constructing generative models from a dataset, a problem which arises
in the context of unsupervised learning.

While generative models in use can be arbitrarily complex, not even the most
elementary models such as RBMs, a simple neural network with only one hidden layer,
are well understood. Historically, the theoretical foundations of neural networks have
been grounded in statistical physics [2][3] and in this work we show the effectiveness of
this approach applied to the RBM model.



2 Empirical results

After a brief overview on the RBM model, we present a recently proposed training
algorithm based on statistical physics [4]. A comparison to classical Monte Carlo based
algorithms is then given, showing the substantial equivalence of the methods. This
preliminary analysis paves the ground for a careful examination of the dynamics of
learning, which are found to be independent on the specific training procedure used.
The RBM is then studied in the linear regime, where mean-field theory from statistical
physics helps in identifying the Singular Value Decomposition (SVD) of the RBM
parameters as the SVD of the training data. On this basis, the analysis of the dynamical
evolution of the SVD of the RBM parameters produces a detailed picture of how
the structure of the training data is embedded into the model. This increases our
understanding of the learning process and gives some clear insights to understand
when the learning has come to an end, improving on current criteria based on flatness
of a likelihood function and subjective quality of generated samples.

Finally, the SVD analysis let us differentiate the trained RBM parameters in a set
of random parameters that represent noise and can be discarded and a set of struc-
tured non-random parameters. This is a first advance in an attempt to determine the
proper statistical ensemble of the RBM model, in order to improve current theoretical
treatments which are based on the approximation that parameters are random and
independent [5].

3 Statistical Physics analysis

Starting from the empirical observations and exploiting the tools of statistical physics
(mean-field theory and replica method), we propose a generic statistical ensemble for
the weight matrix of the RBM and characterize its mean evolution. This let us show
how in the linear regime, in which the RBM is found to operate at the beginning of
the training, the statistical properties of the data drive the selection of the unstable
modes of the weight matrix. A set of equations characterizing the non-linear regime is
then derived, unveiling in some way how the selected modes interact in later stages of
the learning procedure and defining a deterministic learning curve for the RBM.

Analyzing the thermodynamical properties of the realistic statistical ensemble of
RBM that we have proposed, moreover, the model is found to operate in a ferromag-
netic phase which may or may not be of compositional type, depending mainly on the
distribution’s kurtosis of the singular vectors components of W. Experiments on both
artificial and real data show how the RBM operates in the ferromagnetic compositional
phase.

4 Conclusion

The present work let us gain a much deeper understanding of how a RBM works. The
point is to gain insights into the relationship between model and data. This allows
us to give some elements of understanding on which properties of the data drive the
learning and how they are represented in the model. Eventually this will lead us to
identify and cure some flaws of present learning methods.
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Wasserstein regularization for sparse multi-task
regression

[Talk submission]

Hicham Janati(1,3), Marco Cuturi(2,3) and Alexandre Gramfort(1)

(1)Inria, (2)CREST, (3)Université Paris-Saclay

Abstract. Two important elements have driven recent innovation in
the field of regression: sparsity-inducing regularization, to cope with
high-dimensional problems; multi-task learning through joint parameter
estimation, to augment the number of training samples. Both approaches
complement each other in the sense that a joint estimation results in more
samples, which are needed to estimate sparse models accurately, whereas
sparsity promotes models that act on subsets of related variables. This
idea has driven the proposal of block regularizers such as `1/`q norms,
which however effective, require that active regressors strictly overlap.
In this paper, we propose a more flexible convex regularizer based on
unbalanced optimal transport (OT) theory. That regularizer promotes
parameters that are close, according to the OT geometry, which takes
into account a prior geometric knowledge on the regressor variables. We
derive an efficient algorithm based on a regularized formulation of optimal
transport, which iterates through applications of Sinkhorn’s algorithm
along with coordinate descent iterations. The performance of our model
is demonstrated on synthetic simulations.

Keywords: Multi-task learning, Regression, Optimal transport

1 Motivation/Introduction

Consider multiple regression models in high dimensional settings (commonly referred to
as p� n regimes) which are known to be related. A natural assumption that combines
both sparsity and joint estimation is to consider that each vector of regression coefficients
is sparse, and that a common set of active features is shared across all tasks. This
intuition has led to several seminal proposals of Lasso-type models, called multi-task
Lasso (MTL) or multi-task feature learning (MTFL) [Argyriou et al., 2007, Obozinski
and Taskar, 2006]. Both approaches are based on convex `1/`2 group-Lasso norms that
promote block sparse solutions. However, in many applications the assumption of shared
active features between all tasks can be too restrictive. For instance, in the context
of functional brain imaging, where features are de facto brain regions, `1/`q models
suggest that the exact same brain locations are active for each human subject in the
study. This assumption is clearly not realistic [Gramfort et al., 2015].

In this work, we propose to handle non-overlapping supports in standard multi-
task models using an optimal transport distance between the different parameters of



our regression models. We leverage the inherent ability of OT theory to compute a
meaningful distance between probability measures with non-overlapping supports.

2 Methods

Multitask regression. Consider T regression datasets (Xt, Y t) ∈ Rn×p×Rn, where
n is the sample size of each set, and p is the dimension of the common space in which all
observations lie. Our aim is to estimate, in a high-dimensional regime n� p, T linear
regression models: Y t = Xtθt + εt, t ∈ JT K where θ1, . . . , θT ∈ Rp are regression
coefficients to be estimated from the samples Xt, the Yt are the associated responses,
and ε1, . . . , εT ∈ Rn are i.i.d ∼ N (0, σ2).

Unbalanced Wasserstein distance Here we model task similarity using optimal
transport. To do so, we will assume that we have a priori knowledge on the p features
that form our vectors of observations in Rp. Such a knowledge will be encoded as a p×p
matrix M ∈ Rp×p which describes some form of substitution cost. Consider now two
probability vectors a, b in Rp++. Following [Cuturi, 2013], we use an entropy regularized
definition of the Wasserstein distance. We denote by ε > 0 the entropy regularization
strength. Moreover, to cope with inputs with different masses (a>1p 6= b>1p), Chizat
et al. [2017] and Frogner et al. [2015] proposed independently to use a Kullback-Leibler
divergence from the matrix to target marginals a and b:

W (a, b)
def
= min

P∈Rp×p
+

εKL(P |K) + γKL(P1|a) + γKL(P>1|b) , (1)

where K = exp(−M/ε). Large values of γ > 0 tend to strongly penalize unbalanced
transports, and as a result penalize discrepancies between the marginals of P and a, b.

Problem statement. To induce supports proximity between coefficients, we intro-
duce a latent variable θ̄ and propose to estimate the θt by minimizing the following
regularized regression:

min
θ1,...,θT

θ̄∈Rp

T∑
t=1

[
1

2n
‖Xtθt − Y t‖2+

µ

T
W (θt, θ̄) +

λ

T
‖θt‖1

]
, (2)

where λ > 0 and µ > 0 are positive regularization parameters.
When µ = 0, solving (2) boils down to the estimation of T independent Lasso

models, one for each task. When the θt are fixed, the minimization w.r.t. θ̄ consists in
estimating the barycenter of the θt according to the distance W . By increasing µ, one
forces all the coefficients to be closer according to W .

Optimization strategy By combining equations (1) and (2), we get a cost function
that is jointly convex in (θt)t and θ̄ (since the Kullback-Leibler is jointly convex). Strong
convexity is given by the entropy terms KL(P t,K). Thus, we solve it by alternating
the minimization with respect to (P 1, . . . , PT , θ̄) using Generalized Sinkhorn algorithm
and each θt using proximal coordinate descent.



3 Results

We compare the performance of our algorithm against: a Lasso ran independently on
each task and a Dirty model ([Jalali et al., 2010]) Dirty model solves the problem recalled
in (3). Consider a decomposition of the regression coefficients into a common (across
tasks: columns have the same support) and a specific part: θ = θc + θs ∈ Rp×T . Then
each part is penalized differently, this allows for a partial overlap between supports.
When θs = 0 (resp. θc = 0) one falls back to MTFL (resp. Lasso). Each model is
ran on its appropriate grid of hyperparameters. We report the best (AUC) of the
Precision-Recall curve knowing the true coefficients.

min
θc,θs

∈Rp×T

T∑
t=1

1

2n
‖Xtθtc +Xtθts − Y t‖2+µ‖θc‖2,1+λ‖θs‖1 , (3)

The boxplots of Figure 1 show the distribution of the best AUC scores. Coefficients
are generated as sparse images of 576 features. The linear operator applies a gaussian
blurr and a down-sampling operation by a factor of 9 (64 samples). The signal noise
ratio is set to 2 and the number of tasks to 3. When the overlap is 0%, MTW reaches
an AUC of 0.9 for 29% of runs whereas Lasso and Dirty get only 9% both. Only in the
case of a perfect overlap, Dirty is better than alternative methods.
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Fig. 1. Boxplot of AUC scores computed on the estimated coefficients versus ground
truth with Dirty models (in particular MTFL), independent Lasso estimators, and
Multi-task Wasserstein (MTW). Plots obtained with 60 independent runs on synthetic
data. MTW outperforms other models when overlap is less than 50%.

4 Discussion/Conclusion

The seminal work of Caruana [1993] has motivated a series of contributions leveraging
the presence of related learning tasks to improve statistical performance. Our work
is one of them in the context of sparse high dimensonial regression. Using Optimal
Transport to model proximity between coefficients, we proposed a convex formulation
of MTL that does not require any overlap between the supports, contrarily to previous
literature. We show how the MTW model can be solved efficiently relying on fast
coordinate descent iterations and Sinkhorn’s algorithm. Our simulations demonstrate
that even when supports overlap partially, MTW outperforms Dirty models that are
mixtures of `1 and block-sparse `1/`2 norms. Extensions of the model to support signed
coefficients will be pursued in future work.
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Automated machine learning with Monte Carlo
Tree Search

[Talk submission]

Herilalaina Rakotoarison and Michèle Sebag

TAU, CNRS - INRIA - LRI, University of Paris-Saclay

Abstract. The sensitivity of machine learning (ML) algorithms w.r.t.
their hyper-parameters and the difficulty of finding the ML algorithm
and hyper-parameter setting best suited to a given dataset has led to
the rapidly developing field of automated machine learning (AutoML),
at the crossroad of meta-learning and structured optimization. Several
international AutoML challenges have been organized since 2015, mo-
tivating the development of the Bayesian optimization-based approach
Auto-Sklearn and the Bandit-based approach Hyperband . In this paper,
a new approach, called Monte Carlo Tree Search for Algorithm Config-
uration (MOSAIC), is presented, fully exploiting the tree structure of
the algorithm portfolio and hyperparameter search space. Experiments
(on 133 datasets of the OpenML repository) show that MOSAIC perfor-
mances match that of Auto-Sklearn.

Keywords: Model selection, Hyper-parameter optimization, Monte Carlo Tree Search,
AutoML

1 Motivation

The progress of the machine learning (ML) field are witnessed as an explosion of ap-
plications in all fields, from computer vision to recommendation systems. However, the
diversity of ML algorithms and their sensitivity w.r.t. their hyper-parameters make it a
difficult task to find the approach best suited to the application at hand. This difficulty
makes all the more serious the announced shortage of machine learning experts in the
next decade. The problem of automatically finding the best setting for an ML prob-
lem, referred to as AutoML, has attracted interest since the late 1980s, with several
AutoML international challenges organized in the last decade. These challenges have
primed the design and deployment of numerous automated machine learning platforms
(AutoMLP in the following).

At the current state of the art in AutoMLPs are Auto-Sklearn [1] and Hyperband[2].
Auto-Sklearn relies on the Bayesian-based approach. Auto-Sklearn involves two extra
components: meta-learning components to warm-start the Bayesian optimization pro-
cedure, and model ensemble strategy to build a more robust classifier. Auto-Sklearn
involves 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing
methods. Hyperband tackles hyperparameter optimization as a resource allocation task
by exploring a large number of randomly sampled configurations, subject to computa-
tional constraints (cut-off time).



2 Main contribution

Monte-Carlo Tree Search [3] extends the celebrated multi-armed bandit algorithm [4]
to tree-structured search spaces. Each round of Monte Carlo Tree Search consists of
four steps:

– Selection: In each node of the tree, the child node is selected w.r.t. their value.

– Expansion: The algorithm adds one or more nodes to the tree.

– Playout: When reaching the limits of the visited tree, a roll-out strategy is used to
select moves until reaching a terminal node and computing the associated reward.

– Backpropagation: The reward value is propagated back, i.e. it is used to update
the value associated to all nodes along the visited path up to the root node.

Our main contribution is to tackle AutoML as a one-player game, adapting Monte-
Carlo Tree Search (MCTS) to the exploration of the complex and structured deci-
sion space Λ made of all pre-processing, feature selection, model selection and hyper-
parameter optimization, settings. Formally, the proposed approach called Monte-Carlo
Tree Search for AlgorIthm Configuration (Mosaic), tackles the following optimization
problem:

Find λ∗ = argmin
λ∈Λ

L(λ,Dtrain, Dvalid), (1)

where Λ is the set of hyper-parameter settings, L is a loss function to assess the learning
performance on the validation setDvalid of the model learned on the training setDtrain.

In MOSAIC, the order of the choice follows the domain knowledge: choice of pre-
processing method and its parameters then the machine learning algorithm and its
parameters. The MOSAIC parallels the MCTS strategy:

– The tree-path from the root node to an internal node represents a partial solution;

– In each non-terminal node, the choice of a child node is conducted using the stan-
dard UCB [4] rule in the finite case; When reaching the limits of the visited tree, a
roll-out random strategy is applied until reaching a terminal node and computing
the associated reward.

– The reward associated to a full tree-path is computed.

– After the evaluation of a terminal node, the reward is backpropagated to update
the value in each node of the visited tree path; this value will support the choice
among the child nodes in the next tree-walk.

In its current version, the search space of MOSAIC is defined from the scikit-learn ma-
chine learning environment [5], with 13 data preprocessing methods and 17 classifiers.

3 Results

This section presents an empirical evaluation of Mosaic compared to the vanilla ver-
sion of Auto-Sklearn which is obtained by disabling the meta-learning and ensembling
component of Auto-Sklearn. We use the same settings for all experiments: memory
limited to 3GB and time budget of one hour on one CPU. We evaluates 10 times both
Auto-Sklearn and MOSAIC on 102 (binary and multi-class) datasets. Then compute a
ranking of the two approaches according to their average test performance (Balanced



accuracy) for each dataset and finally report the average rank over all datasets of MO-
SAIC and Auto-Sklearn. Figure 1 reports the average rank of the two methods showing
that MOSAIC slightly outperforms Vanilla Auto-Sklearn as the search goes on.

Fig. 1. Average rank of MOSAIC and Vanilla Auto-Sklearn across 102 datasets.

4 Discussion and Perspectives

The main contribution of the paper is the Mosaic AutoML platform, adapting and
extending the Monte-Carlo Tree Search setting to tackle the structured optimiza-
tion problem of algorithm selection and configuration. The merits of the approach
are demonstrated as it matches the performance of the mature Auto-Sklearn, which
dominates the state of the art in the last 3 years. Two perspectives for further research
will be: (1) improving the sampling of continuous hyper-parameter values, by taking
inspiration from AlphaGo and (2) taking advantage in the search of the meta-features
describing the current dataset, and to capitalize the models learned from the past
datasets.
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Abstract Machine learning has witnessed the success of solving tasks depending
on a hyperparameter. While multi-task learning is celebrated for its capacity to
solve jointly a finite number of tasks, learning a continuum of tasks for various
loss functions is still a challenge. A promising approach, called Parametric Task
Learning, has paved the way in the case of piecewise-linear loss functions. We
propose a generic approach, called Infinite Task Learning, to solve jointly a contin-
uum of tasks via Vector-Valued Reproducing Kernel Hilbert Spaces. We provide
generalization guarantees to the suggested scheme and illustrate its efficiency in
cost-sensitive classification, quantile regression and density level set estimation.

Keywords: operator-valued kernels, vv-rkhs, quantiles, functional learning

1 Motivation/Introduction

Several fundamental problems in machine learning and statistics can be phrased as the minimiza-
tion of a loss function described by a hyperparameter. The hyperparameter might capture numerous
aspects of the problem: (i) the tolerance w. r. t. outliers as the ε-insensitivity in SVR, (ii) impor-
tance of smoothness or sparsity such as the weight of the l2-norm in Tikhonov regularization,
l1-norm in LASSO, (iii) Density Level-Set Estimation (DLSE), see for example one-class support
vector machines One-Class Support Vector Machine (Schölkopf et al., 2000), (iv) confidence as
examplified by Quantile Regression (QR, Koenker et al., 1978), or (v) importance of different
decisions as implemented by Cost-Sensitive Classification (CSC, Zadrozny et al., 2001).

For some of these problems such as QR, CSC or DLSE, one is usually interested in solving
the parametrized task for several hyperparameter values. When dealing with a finite number
of those hyperparameters, multi-task learning (Evgeniou et al., 2004) is then a relevant setting,
enabling to take benefit from the relationship between close parameterized tasks while keeping
local properties of the algorithms: ν-property in DLSE (Glazer et al., 2013) or quantile property
in QR (Takeuchi, Le, et al., 2006).

Eventually, it can be advantageous to allow the hyperparameter to change, possibly among
infinitely many values in order to provide a prediction tool able to deal with any value of the
hyperparameter. In their seminal work, (Takeuchi, Hongo, et al., 2013) extend the multi-task
learning setting by considering an infinite number of parametrized tasks in a framework called
Parametric Task Learning. They prove that under a piecewise-linearity assumption on the loss
function, one recovers the task-wise solution for the whole spectrum of hyperparameters, at the
cost of having a piecewise-linear model.

While being able to find the task-wise solution is a desired property, the strong assumption on
the loss function and the restriction to a piecewise-linear model in the hyperparameter might be a
hindrance. In this paper, we define a new family of tasks, called Infinite Task Learning, in which



the piecewise linearity assumption on the loss is relaxed and whose goal is to learn a function
with values in the space of continuous functions over the hyperparameter space. We propose to
solve ITL in the context of vv-RKHS, shown to be adapted to multi-task learning (Micchelli et al.,
2005). Due to space limitation, only the Quantile Regression problem is presented here.

2 The Infinite-Task learning framework

A supervised parametrized task is defined as follows. Let (X, Y) ∈ X×Y be a random variable with
joint distribution PX,Y ; PX,Y is assumed to be fixed but unknown. Instead we have access to n in-
dependent identically distributed observations called training samples: S := ((xi, yi))

n
i=1 ∼ P⊗nX,Y .

Let Θ be the domain of hyperparameters, and vθ:Y × Y → R be a loss function associated to
θ ∈ Θ. Let H ⊂ F (X; Y) denote our hypothesis class; the goal is to find a minimizer of the
expected risk

Rθ(h) := EX,Y [vθ(Y, h(X))], (1)

QR: Assume Y ⊆ R and θ ∈ [0, 1]. For a given hyperparameter θ, Quantile Regression aims at
predicting the θ-quantile of the real-valued output conditional distribution PY|X. The task can be
tackled (Koenker et al., 1978) using the pinball loss defined in Eq. (2).

vθ(y, h(x)) = |θ− 1R−(y− h(x))||y− h(x)| (2)

The ITL framework aims at solving jointly a continuum of parametrized tasks. To that end, the
following optimization problem is considered

min
h∈H

R(h) := EX,Y

[∫
Θ

vθ(Y, h(X)(θ))dθ

]
. (3)

Note that h is now a function-valued function, since at each point x we want a solution h(x) to be
able to predict a value at each hyperparameter. To modelize this, H ⊂ F (X; F (Θ; Y)) is chosen
to be the vv-RKHS associated with the operator valued kernel K(x, z) = kX(x, z)IHkΘ

where
both kX and kΘ are classical scalar kernels, one on the input space, the other on the hyperparameter
space. Since solving this problem without knowing PX,Y is impossible, we rely on some empirical
risk minimization strategy, along with a Quasi-Monte Carlo approximation with anchors (θj)

m
j=1

to compute the integral. We also add a penalization based on the RKHS norm in H, so that the
problem to solve becomes

arg min
h∈HK

R̃S(h) +
λ

2
‖h‖2HK

, λ > 0. (4)

where R̃S(h) := 1
nm

∑n,m
i,j=1 vθj(yi, h(xi)(θj)).

3 Guarantees for the ITL scheme

Thanks to the choice of H, Eq. (4) becomes amenable to optimization thanks to the following
finite expansion.

Proposition 1 (Representer). Assume that for ∀θ ∈ Θ, vθ is a proper lower semicontinuous
convex function with respect to its second argument. Then Eq. (4) has a unique solution h∗, and ∃
(αij)

n,m

i,j=1 ∈ Rn×m such that ∀(x, θ) ∈ X×Θ

h∗(x)(θ) =

n∑
i=1

m∑
j=1

αijkX(x, xi)kΘ(θ, θj).
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Figure 1: Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty
(λnc = 2). Right plot: no non-crossing penalty (λnc = 0). The plots show 100 quantiles
of the continuum learned, linearly spaced between 0 (blue) and 1 (red).

In Prop. 2, we derive generalization error to the resulting estimate by stability argument (Bousquet
et al., 2002), extending the work of Audiffren et al. (2013) to Infinite-Task Learning. We are
especially interested in the effect of the two approximations, the one related to the size of the
training sample and the other captured by m, the number of locations taken in the integral
approximation. The key insight of Prop. 2 is that despite the two approximations (n, m), it is
possible to get excess risk guarantees, highlighting the role ofm and n.

Proposition 2 (Generalization). Let h∗ ∈ H be the solution of Eq. (4) for the QR or CSC
problem with Quasi Monte Carlo approximation. Under mild conditions on the kernels kX, kΘ

and PX,Y , one has

R(h∗) 6 R̃S(h∗) + OPX,Y

(
1√
n

)
+ O

(
log(m)

m

)
.

Concerning the implementation of ITL, the optimization is performed on the (αij)
n,m

i,j=1 vector
of size nm with L-BFGS on a smoothed version of the pinball loss. Moreover, having a contin-
uous model in the hyperparameter allows us to design new penalty to enforce the non-crossing
phenomenon between quantiles, namely

Ω̃nc(h) =
λnc

n

n∑
i=1

m∑
j=1

∣∣∣∣−∂h∂θ (xi)(θj)

∣∣∣∣
+

(5)

The Fig. 1 illustrates the efficiency of this new constraint made possible by the continuum scheme.

4 Discussion/Conclusion

Infinite Task Learning with vv-RKHS is a novel nonparametric framework aiming at jointly
solving parametrized tasks for a continuum of hyperparameters. This approach allows to recover
several existing multi-task approaches and extends Parametric-Task Learning to nonparametric
models and a larger class of loss functions.
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Abstract. With the emergence of IoT concept (Internet of Things) in
recent years, the multivariate data mining from IoT sensors is becoming
a novel research hot spot. In particular, early classification of time series
aims at predicting events as early as possible, which may help mitigating
risks or anticipate actions. This work is based on a previous proposal,
which combines stream data processing and early classification, to gen-
erate complex event processing rules on multivariate time series mining.
Precisely, we propose novel optimizations, and leverage a distributed
computing framework, namely Spark, to scale up the algorithm for Big
Data context.

Keywords: Time Series Data Mining, Shapelets, Early Classification, Multivariate
Time Series, Distributed Algorithm

1 Motivation/Introduction

Early classification, an emerging subject in data mining, refers to predicting events
occurrences as early as possible [3]. Being applied to numerous time-dependent contexts
such as IoT (Internet of Things) data flows, apart from the accuracy considered by
classic classifiers, early classifier takes simultaneously the earliness into account.

Our research interest is in predictive analytic and specifically over classified time
series mining. Based on a relatively new concept for time series data mining, which is
called shapelet [7], we focus on the data flows from IoT sensors which are always mul-
tivariate, sequential, and massive. Shapelet-based mining algorithm can be potentially
applied in processing IoT data flows. However, we need to highlight the fact that the
current algorithm [4] on data flows mining is still relatively lethargic, specifically when
the data is expanded to multi-dimensional and large scale.

In recent years, some research initiatives [1, 4] have scaled up the data dimensions
in time series analytic. A typical approach of multivariate time series mining discussed
in [4] presents a composed algorithm of USE (Univariate Shapelet Extraction) and
SEE (SEquence Extraction), which allows to extract class features of time series
data, and generates the rules to predict the events proactively. However, the current
approach based on central processing (under Python) is not suitable for large data
scale as required by many real-world applications.

Therefore, in this article, we present a novel distributed approach in multivariate
time series mining. Our work makes contributions to: (i) reducing the complexity of
USE & SEE; (ii) scaling up the improved algorithm to apply in the context of big data.



2 Optimization of USE & SEE

To achieve early classification, our work takes advantage of a new primitive for data
mining that emerged recently, which is called Time Series Shapelets[7]. Basically,
feature extraction is the precondition of an effective and efficient classifier. Shapelet is
such kind of features that are special subsequences and particularly discriminating in
time series. The optimal algorithm to extract the univariate Shapelet proposed in [4]
has a complexity of O(n2m3 logm) where m is the length of time series and n is the
number of time series in the dataset.

The time complexity of USE is impacted by the computation of the similarity of
time series, such as Euclidean distance[7], Dynamic Time Warping (DTW)[2], MASS[4].
Therefore, we intend to improve the performance by choosing the most efficient method
based on Nearest Neighbor Algorithms due to its easy-design feature. By deciding a
distance threshold between a shapelet and the sub-sections in time series of different
classes, we can then compute shapelets’ Information Gain, which serves as the cri-
terion of shapelets’ selection. For univariate time series, USE is capable of extracting
features for early classification. However, when time series scales up to multivariate
data, the challenge is then boiled down to find the potential interactions/relations be-
tween different variables. SEE serves to extract the shapelets’ sequential relations in
diverse dimensions. As shown in Figure 1, with the input of a set of shapelets generated
by USE, SEE combines these shapelets and filters the most characteristic sequential
relations as output by using Information Gain or Term Frequency-Inverse Document
Frequency (TF-IDF). Finally, the output, namely Time-Annotated Sequences (TAS),
constitutes the features extracted from multivariate time series for a early classifier,
according to the accuracy and earliness criteria set by the user.

Fig. 1. Global process of Early classification for Multivariate Time Series

3 Preliminary results and future work

As there is an explicit difference between the data scale of time series mining and classic
data mining, to train the classifier, the amount of data needed for time series mining
are several orders of magnitude higher than that of classic data mining. Therefore,
for time series mining, a distributed environment to execute the program is necessary
to make the feature extraction process more efficient. To this end, as illustrated in
Figure 1, we have proposed some modifications of the current algorithm(shown with
blue color): (i) Using Hash Table to index shapelets and sequences during the generation
process of class features, which allows to visibly reduce the occupied memory space on
Spark cluster and save the communication costs between clusters nodes; (ii) During the
sequential pattern discovery process, the pattern selection is then based on TF-IDF,
rather than Information Gain, which caused a nm2 higher time complexity and a waste
of clusters resource.



Currently, by implementing only (i) on Spark, we have improved the SEE algo-
rithm: our tests on the dataset Wafer, show a gain in performance for the distributed
algorithm of 210% (in local mode, 8G RAM, 1 worker), and 560% (in cluster
mode, 213.8G RAM, 6 workers) compared to the original SEE.

To reduce the complexity of USE, which is O(n2m3 logm) according to [4], enor-
mous potential methods emerged over recent years could be inspired, such as Symbolic
Aggregate approXimation (SAX), Random Matrix Projection[6][5], or even a classic
concept in text mining TF-IDF, with a better performance than Information Gain,
which allows to reduce the time complexity of Shapelet’s Extraction to O(n2m3). Be-
sides, Shapelet-based algorithm is not the only method to do the Time-Series Predic-
tion, Markov logic networks, or Recurrent Neural Networks (RNN)[1] could also be
potentially taken into consideration.

4 Discussion/Conclusion

In this work, we proposed a distributed approach to address the problem of massive
multivariate data flows mining. Compared to classic classifiers, the early classification
of time series data takes not only the accuracy, but also the earliness of prediction into
account, which allows to predict the event as early as possible.

USE & SEE, two separable engines, extract and select shapelet features, as well
as the potential interactions/relations between shapelets of different dimensions, and
learn Time-Annotated Sequences (TAS) which serve as the extracted features for early
classification. We optimized the SEE by TF-IDF and parallelized it in a distributed
environment. In addition, we followed our theoretical hypothesis with practical exper-
iments, tested over a real-life data set. The satisfactory results proved the efficiency
of the distributed approach, and testified its competitiveness. Different optimizations
are in our planning list. Specifically, to reduce the complexity of USE algorithm and
to adjust it in a distributed environment.
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Abstract. Embedding complex objects as vectors in low dimensional spaces is a longstanding
problem in machine learning. We propose in this work an extension of that approach, which
consists in embedding objects as elliptical probability distributions, namely distributions
whose densities have elliptical level sets. We endow these measures with the 2-Wasserstein
metric, with two important benefits: (i) For such measures, the squared 2-Wasserstein metric
has a closed form, equal to the sum of the squared Euclidean distance between means and
the squared Bures metric between covariance matrices. The latter is a Riemannian metric
between positive semi-definite matrices, which turns out to be Euclidean on a suitable factor
representation of such matrices, which is valid on the entire geodesic between these matrices.
(ii) The 2-Wasserstein distance boils down to the usual Euclidean metric when comparing
Diracs, and therefore provides the natural framework to extend point embeddings. We show
that for these reasons Wasserstein elliptical embeddings are more intuitive and yield tools
that are better behaved numerically than the alternative choice of Gaussian embeddings with
the Kullback-Leibler divergence. In particular, and unlike previous work based on the KL
geometry, we learn elliptical distributions that are not necessarily diagonal. We demonstrate
the advantages of elliptical embeddings by using them for visualization, to compute embeddings
of words, and to reflect entailment or hypernymy.

Keywords: optimal transport, embeddings, dimensionality reduction

1 Motivation

One of the holy grails of machine learning is to compute meaningful low-dimensional embeddings for
high-dimensional complex objects. That ability is crucial to tackle advanced tasks, such as inference
on texts using word embeddings, image understanding, or concise representations for nodes in a
huge graph. When those embeddings live in a 2 or 3 dimensional space, they can also be used for
data visualization.

Early references in this field focused on creating isometric embeddings in target low dimensional
Euclidean spaces Y = Rd, building upon strong mathematical foundations [Johnson and Linden-
strauss, 1984]. Given input points x1, . . . , xn, the goal was to compute embeddings y1, . . . ,yn in Rd

whose pairwise distances ‖yi−yj‖2 would not depart from the original distances dX (xi, xj). Starting
with metric multidimensional scaling (mMDS), several approaches have refined this intuition [Hinton
and Roweis, 2003, Maaten and Hinton, 2008]. More general criteria, such as reconstruction error,
co-occurence, or relational knowledge, be it in metric learning [Weinberger and Saul, 2009] or for
word embeddings [Mikolov et al., 2013] can be used to obtain vector embeddings, whose distance or
more generally dot-products 〈yi, yj〉 must comply with some desiderata.



Probabilistic Embeddings Our work belongs to a recent trend, pioneered by Vilnis and McCallum,
who proposed to embed data points as probability measures in Rd [2015]. Usual point embeddings
can be regarded as a very particular and degenerate case of probability measures, in which the mass
is infinitely concentrated on a single point (a Dirac). Probability measures that are more spread-out,
or event multimodal, provide therefore additional flexibility. To exploit this, Vilnis and McCallum
proposed to embed words as Gaussians endowed with the Kullback-Leibler (KL) divergence or the
usual `2 metric [Smola et al., 2007]. Athiwaratkun and Wilson have extended the latter approach to
mixtures of Gaussians [2017]. The Kullback-Leibler and `2 geometries on measures have, however,
an important drawback: these geometries do not coincide with the usual Euclidean metric between
point embeddings when the variances of these Gaussians collapse and become Diracs. Indeed, the
KL divergence between two Gaussians diverges to ∞ when their variances become small, whereas
the `2 distance saturates and becomes 1 no matter where the Gaussians are located. Numerical
issues arising from these degeneracies are avoided in these works by often times switching back to a
simple Euclidean metric at test time..

2 Contributions
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Fig. 1: Reconstruction performance of our ellip-
tical embeddings against Poincare embeddings
(values reported from [Nickel and Kiela, 2017])
on the hypernymy evaluation task, evaluated by
mean retrieved rank (lower=better) and MAP
(higher=better).

We propose in this work a comprehensive frame-
work for probabilistic embeddings, in which
point embeddings are seamlessly handled as a
particular case. We consider arbitrary families
of elliptical distributions, not necessarily Gaus-
sians, and focus in particular on uniform ellip-
tical distributions, that are more intuitive to
handle because of their compact support. The
cornerstone of our approach lies in the use of
the 2-Wasserstein distance, which can handle
degenerate measures and admits a closed form,
both for the metric and its gradient [Gelbrich,
1990] in its original Riemannian formulation and
more amenable Euclidean parameterization. We
provide numerical tools to carry out the compu-
tation of embeddings in different scenarii, both
to optimize with respect to the metric as is done
in multidimensional scaling, or with respect to a dot-product, as shown in our applications to word
embeddings for entailment, similarity and hypernymy tasks.

Preprint & Implementation This work is to appear at NIPS 2018. A preprint is avaliable on arxiv
[Muzellec and Cuturi, 2018]. Python code for reproducing the experiments in this preprint is available
in the following repository: https://github.com/BorisMuzellec/EllipticalEmbeddings.
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Abstract. We present a non-asymptotic theoretical analysis of superquan-
tile linear prediction, based on a method originally proposed by Rock-
afellar, Uryasev and Zabarankin. Super-quantile regression allows one
to learn linear predictors with strong guarantees on the test error when
the testing distribution may differ from the training distribution. Indeed
classical statistical machine learning methods trained using empirical
risk minimization work under the assumption that the testing distribu-
tion and the training distributions are identical. Should this assumption
fail to be satisfied at test time, classical linear predictors may behave
unpredictably and perform arbitrarily badly.
The notion of α-superquantile allows one to model such catastrophic risks
in a precise manner. Instead of minimizing the average of the loss, we
then minimize the superquantile of the loss. The associated minimization
problem enjoys an intuitive interpretation owing to its Fenchel dual rep-
resentation. We establish non-asymptotic bounds for kernel-based meth-
ods trained by minimizing the new objective, demonstrating the stronger
robustness of the approach compared to classical counterparts when the
testing distribution departs from the training distribution. We present
numerical illustrations using a first-order optimization algorithm in dif-
ferent settings showing the interest of the approach.

Keywords: statistical learning

1 Motivation/Introduction

The empirical risk minimization and maximum likelihood principles lie at the core of
many of statistical machine learning methods for prediction. In order to predict on
unseen data, one usually minimizes the empirical loss on the training data, with a reg-
ularization penalty (or a constraint alternative). Machine learning methods are being
deployed in several safety-critical areas, from healthcare to transportation, where the
unseen data may depart from the training data in an unexpected way, and where the
automated predictions are being used to feed decision-making processes: statistical ma-
chine learning methods showing robustness to distributional shifts and enjoy provable
theoretical safety guarantees are needed.

The key to build safer machine learning methods is to put in question the em-
pirical or expected loss minimized during training. By construction, should extreme



losses be suffered, the empirical or expected loss would hardly be affected. Instead, if
one considers the empirical or expected quantiles of the loss, then extreme losses can
be accounted for. The robust optimization and risk analytics communities have been
developing over the years an array of concepts that one can encompass under the term
of “risk measures” to model extreme losses. In particular, superquantile, also known in
robust optimization and risk analytics as the Conditional Value at Risk (CVaR), pro-
vides an attractive scalar representation of a random variable for risk-averse decision
making. Contrarily to classical quantiles, superquantiles are more stable with respect
to perturbations of the underlying random variable. We analyze here alternatives to
linear prediction methods, including kernel-based methods, that enjoy provable the-
oretical safety guarantees. The proposed methods minimize either a given empirical
super-quantile of the loss or the integrated empirical super-quantiles of the loss. The
theoretical guarantees provided characterize the rate of convergence with respect to the
sample size of the maximum loss that may be suffered should the testing distribution
departs from the training distribution within a radius of a ϕ-divergence between the two
distributions. Compared to classical generalization bounds for classical methods such
as kernel ridge regression or kernel logistic regression, the proposed bounds highlight
the distributional robustness of the methods compared to their classical counterparts,
that is a lower maximum loss if the testing data departs significantly from the training
data.

2 Related work

Superquantile linear regression was proposed and explored in the series of papers Rock-
afellar and Uryasev [2000, 2002], Rockafellar et al. [2008]. The approach has been mostly
explored for (regular) un-regularized linear regression. The notion of superquantile
(SQ), also known as the Conditional Value at Risk in robust optimization and risk an-
alytics, has been extensively studied academically, and perhaps not widely used enough,
in quantitative finance. The notion also underlies chance-constrained robust optimiza-
tion, such as chance-constrained linear optimization, conic optimization, etc. [Ben-
Tal et al., 2009]. The superquantile is a particular instance of a coherent risk mea-
sure [Artzner et al., 1999]. Coherent risk measures can be encompassed in the Op-
timized Certainty Equivalent framework introduced in [Ben-Tal and Teboulle, 2007],
which we use to derive our results.

Superquantiles have also been used in the same spirit as ours for reinforcement
learning Chow et al. [2015]. We mention the work of [Shafieezadeh-Abadeh et al., 2015]
where a related approach, yet with ambiguity set defined with Wasserstein distances,
has been studied for the specific case of logistic regression. The authors also have
established finite-sample bounds although with quite different techniques tailored to
deal with Wasserstein distances. Therefore the two works complement each other nicely.
We also mention the work of Duchi et al. [2016] who used similar tools than ours
yet with a different perspective, namely providing confidence intervals for solutions of
empirical risk minimization problems.

Our superquantile approach on learning bares some similarities with robust statis-
tics Huber and Ronchetti [2009], but is radically different in essence. In robust statis-
tics, one is mostly interested in avoiding large losses induced by outliers by removing
or ignoring them. In contrast, our framework is rather inspired by robust optimiza-
tion Ben-Tal et al. [2009], where one is instead attempting to achieve the best perfor-
mance should the data at test time be different from the training data. Early proposals



of robust statistical machine learning methods can be found in Ben-Tal et al. [2009].
These methods were mostly developed on a case-by-base basis for each method and for
each type of distributional shift, stated directly in terms of the mean or the variance of
the distribution. We also mention that superquantile regression is different from quan-
tile regression even though the names may sound similar. In quantile regression, one
learns from data a linear predictor to predict a particular quantile of the response. In
superquantile regression, one learns instead a linear predictor to predict well on testing
data that may be drawn from a different distribution than the training data.

We present here a general approach where one minimizes the superquantile of the
loss instead of the expectation of the loss usually. We establish the non-asymptotic
bounds characterizing the robustness of the proposed superquantile linear predictors
including kernel-based predictors. The bounds apply in particular to the original su-
perquantile unregularized linear regression Rockafellar and Uryasev [2000]. The bounds
also apply to a broader family of linear predictors, namely kernel ridge regression. We
also show that the proposed linear predictors can be easily implemented using the
method of simple dual averages, leveraging a dual representation of superquantiles. We
present numerical illustrations that highlight the interest of the approach compared to
the classical ridge regression.
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Abstract. The comparison of observed brain activity with the statis-
tics generated by artificial intelligence systems is useful to probe brain
functional organization under ecological conditions. Here we study fMRI
activity in ten subjects watching color natural movies and compute deep
representations of these movies with an architecture that relies on optical
flow and image content. The association of activity in visual areas with
the different layers of the deep architecture displays complexity-related
contrasts across visual areas and reveals a striking foveal/peripheral di-
chotomy.
See full paper: https://ccneuro.org/2018/proceedings/1071.pdf
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1 Introduction

The understanding of brain functional architecture has long been driven by subtrac-
tive reasoning approaches, in which the activation patterns associated with different
experimental conditions presented in event-related or block designs are contrasted in
order to yield condition-specific maps (Poline & Brett, 2012). A more ecological way of
stimulating subjects consists in presenting complex continuous stimuli that are much
more similar to every-day cognitive experiences.

The analysis of the ensuing complex stimulation streams proceeds by extracting
relevant features from the stimuli and correlating the occurrence of these features with
brain activity recorded simultaneously with the presentation of the stimuli.

From the different layers of the deep neural networks, we build video represen-
tations that allow us to segregate (1) occipital and lateral areas of the visual cortex
(reproducing the results of (Güçlü & van Gerven, 2015)) and (2) foveal and peripheric
areas of the visual cortex. We also introduce an efficient spatial compression scheme for
deep video features that allows us to speed up the training of our predictive algorithm.
We show that our compression scheme outperforms PCA by a large margin.

2 Methods

We use a deep neural network trained for action recognition to build deep represen-
tations of more than four hours of color natural movies. We use Temporal Segment



Network (TSN) (Wang et al., 2016), a deep network pretrained on the largest action
recognition dataset available (Kay et al., 2017).

The TSN network takes raw frames and optical flow fields as inputs and creates
low-level to high-level abstractions of the videos using two dedicated streams. Each
activity in both streams can be considered as specific features or representations of the
video.

If we were to extract all network activities of the movies we would need to store
more than 6 millions floats per frame in the dataset. Such a representation would
be highly redundant. In order to keep the volume of data reasonable, in each stream
we only focus on four convolutional layers L1, L2, L3, L4 ranked by complexity. We
further compress the data using a spatial down-sampling procedure and use temporal
smoothing so that we get one representation every two seconds of video, which allows
us to match the acquisition rate of fMRI scanners.

10 subjects were scanned while watching the movies. In order to link extracted
deep video features to the internal representation of videos in each subject we use a
simple linear model to fit their brain activity in each voxel.

The use of a very simple model allows us to posit that the performance of the
predictive model from a particular video representation is mostly linked to the biological
suitability of the video representation.

Figure 1 gives an overview of the pipeline used to extract and process deep video
features to estimate the brain activity of subjects.

G[t]

O[t]

Final class score

Raw frames stream

Optical flow fields stream

TSN Network

L1[t] L2[t] L3[t] L4[t]

Class score

Temporal DownsamplingSpatial Downsampling

Linear predictive model 

g

Temporal DownsamplingTemporal Downsampling

Predictions from flow fields stream activities Predictions from raw frames stream activities

L1 L2 L3 L4

Fig. 1. Feature extraction and regression scheme: at each time frame we compute and
extract the activities of four layers L1, · · · , L4 of the temporal segment network on a
single frame and on a stack of 5 consecutive optical flow fields. The extracted activities
are spatially and temporally down-sampled and then used to predict brain activity of
subjects exposed to the video stimuli.

3 Results

The extracted deep network features lead to different prediction performance depending
on the down-sampling procedure, the stream used and the localization of target voxels.

We show that preserving the channel structure of the network during spatial com-
pression procedure is key for developing an efficient compression scheme.

We compare three spatial compression schemes for network activities: (1) Stan-
dard principal component analysis (PCA) with 2000 components; the transformation



is learned on training sessions before it is applied to all sessions. (2) Average pooling
inside channels (APIC) which computes local means of activities located in the same
channel. The APIC approach strongly outperforms PCA. When using APIC we predict
correctly up to 850 times more voxels than when using PCA.

Depending on the considered region of the brain, the best fitting representation
varies. We show that the compressed activities of different layers show contrasts be-
tween low-level (retinotopic) versus high-level (object-responsive) areas, but also be-
tween foveal and peripheral areas.

The difference between the prediction score from high level layer activity and low
level layer activity of both streams (Lflow

4 − Lflow
2 and Lrgb

4 − Lrgb
2 ) yields a clear

contrast between occipital (low-level) and lateral (high-level) areas. This highlights a
gradient of complexity in neural representation along the ventral stream which was
also found in (Güçlü & van Gerven, 2015).

The difference between predictions score from low-level layers activity of flow fields
stream and high level layers activity of raw frames stream (Lflow

1 − Lrgb
4 ) yields a

contrast that does not match boundaries between visual areas; instead, it does coincide
with the retinotopic map displaying preferred eccentricity.

4 Discussion

Reproducing the results of (Güçlü & van Gerven, 2015) we have shown that lateral
areas are best predicted by the last layers of both streams whereas occipital areas are
best predicted by first layers of both streams. We have also shown that foveal areas
are best predicted by last layers of the raw frames stream and that peripheric areas
are best predicted by the first layers of the flow fields stream. We have introduced
a compression procedure for video representation that does not alter too much the
channel structure of the network, yielding tremendous gains in performance compared
to PCA.

In conclusion, our study provides key insights that areas have a role linked to their
retinotopic representation when performing action recognition. Future studies should
focus on finessing this result by using a network tuned for other tasks.
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Abstract. The aim of global optimization is to find the global optimum
of arbitrary classes of functions, possibly highly multimodal ones. We
focus on the subproblem of global optimization for differentiable func-
tions and we propose an Evolutionary Search-inspired solution where
we model point search distributions via Generative Neural Networks.
This approach enables us to model diverse and complex search distri-
butions based on which we can efficiently explore complicated objective
landscapes. In our experiments we show the practical superiority of our
algorithm versus classical Evolutionary Search and gradient-based solu-
tions on a benchmark set of multimodal functions, and demonstrate how
it can be used to accelerate Bayesian Optimization.

Keywords: Generative neural networks, non-convex optimization, evolutionary search.

1 Introduction

Problem formulation and related work In global optimization the task is to find the
global optimum of an objective function f over a compact set X . For general classes
of functions, this cannot be performed greedily and requires the exploration of the
associated landscape. Evolutionary Strategy (ES) is a state-of-the-art framework that
has recently seen a growing interest in the machine learning community [6], tackling the
global optimization problem when one only has access to a zeroth order oracle of the
objective f . One popular ES algorithm is the Natural Evolution Strategies (NES) [9],
where a search distribution pθ is used to generate points x where f will be subsequently
evaluated. From these function evaluations, NES produces a search gradient on the
parameters towards lower expected objective. Formally, it minimizes:

J(θ) = Ex∼pθ [f(x)] (1)

by gradient descent, encouraging pθ to steer its probability mass in area of smallest
objective value, and relying on internal noise to explore the objective landscape. The
search gradient can be estimated from samples using a Monte-Carlo estimate of the
score function estimator [7]:

∂

∂θ
J(θ) = Ex∼pθ

[
f(x)

∂

∂θ
log pθ(x)

]
(2)
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NES improves over this plain gradient by using the natural gradient [1], and reports
state-of-the-art performances on a large continuous optimization benchmark. However,
the gradient estimator (2) requires a closed-form for pθ, which is therefore almost
always chosen to be Gaussian - θ describing the mean and variance parameters. This
simplification taken for the sake of tractability can however significantly slow down the
optimization process, as the search ellipsoids produced by the Gaussian distribution
can provide a poor fit to the areas of small values of the objective landscape. Using more
diverse and general search distributions is therefore an interesting way to improve ES.
One of the most promising class of models for fitting search distributions is the class
of generative neural networks [3] that have been shown to be able to model non-trivial
multimodal distributions [2].

Contribution We propose to replace Gaussian search distributions by generative neu-
ral networks, which allows us to improve both convergence speed and quality of found
minima by having more general and complex search distributions. To the best of our
knowledge, this is the first time that neural generative models are proposed for opti-
mization purposes. To further improve convergence speed, our method leverages gradi-
ent information, which is often available in machine learning related global optimization
tasks, like hyper-parameters optimization [5], sample-variance penalization [8] or merit
functions optimization in Bayesian Optimization.

2 Method

NES chooses the search distribution pθ to be Gaussian, although any parametric dis-
tribution could be used to search the objective landscape. A general way to construct
one is to apply a parametric transformation to an initial random variable u, which
probability distribution we note P. In our case, the parameter vector θ of this trans-
formation has to be adapted or learned so that pθ can be used to explicitly optimize f .
Neural networks are able to generate complex transformations and their weights and
biases can be learned quickly thanks to gradient back-propagation, and therefore they
constitute good candidates for generating pθ from P.
We note Gθ the neural network parametrized by θ (the weights and biases of the net-
work), mapping the noise u ∼ P into points x ∈ X . As our goal is to generate queries x
with low-value of the objective, (1) is a natural cost function for training Gθ. However,
note that we don’t have access to a closed form of pθ and therefore ideas similar to
NES cannot be applied. Still, (1) can be rewritten as:

J(θ) = Eu∼P [f(x(θ, u))] (3)

where x(θ, u) is the output of Gθ with input u. This allows us to compute an estimate
of J ’s gradient with respect to θ, known as the pathwise derivative estimator [7]:

∇θJ(θ) ' 1

N

N∑
i=1

∂

∂θ
f(x(θ, ui)) =

1

N

N∑
i=1

∂x

∂θ
(θ, ui)

T∇xf(x(θ, ui)) (4)

where {u1, . . . , uN} is a collection of samples from P. This stochastic estimate of the
gradient is then fed to a stochastic gradient descent algorithm. Note that this estimator
requires access to f ’s derivatives, and that the Jacobian term ∂x

∂θ
of the neural network

can be easily computed via back-propagation.



3 Results

In our full paper [4], we compare our method with two state-of-the-art evolutionary
algorithms - NES and Covariance Matrix Adaptation Evolution Strategies (CMA-ES),
and with a repeated greedy derivative-based algorithm used in the Bayesian Optimiza-
tion (BO) community. We obtain from competitive to best results on a benchmark
testbed of multimodal functions, and demonstrate empirically the good scalability of
our algorithm. We also show how our method can be incorporated within the BO
procedure to provide acceleration and scalability.

4 Conclusion

We propose to use neural generative models to optimize multimodal black-box functions
for which gradients are available. We show the merits of our approach on a benchmark
set of multimodal functions by comparing with state-of-the-art zeroth order methods
and a repeated gradient-based greedy method. We also demonstratre how to use this
idea in the Bayesian Optimization framework by efficiently optimizing acquisition func-
tions. Other applications of this new method are numerous. In future work, we wish
to combine recent methods [5] with our algorithms to optimize hyper-parameters of
machine learning models. Another promising application of our method is the efficient
global optimization of deep neural networks, which we also plan to tackle in future
work.
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Abstract. In the field of mobile robotics, finding an optimal control
policy is a challenging task. PID controllers have been widely used in
the industry. However, tuning a PID controller is not easy, especially to
take into consideration the fluctuation in the precision of the perception.
We propose a neuroevolution algorithm to find the optimal param-
eters of the controller in real time. The controller is tuned by a neural
network which is trained by with the covariance matrix adaption
evolution strategy (CMA-ES) . The neural network takes into ac-
count both the error and the uncertainty of the measurement the tuning
of the parameters. The level of uncertainty in the measurement is given
by the the covariance matrix of the Kalman filter.

Keywords: Neuroevolution, Machine learning, Neural network, Gradient-free
optimization, Robotics, mobile robot, Control theory, PID controller

1 Introduction

In the last few years, neuroevolution [1] has gained interest in the research com-
munity. It has been shown to outperform reinforcement learning algorithms in
certain situations where the search space is non-convex and noisy or the gradient
is not available [2]. Neuroevolution describes a method to optimize neural net-
works with evolutionary algorithms. The algorithm is extremely parallelizable
and scalable [3]. This document aims to demonstrate a method to automatically
tune a PID controller of a car-like mobile robot using neuroevolution. The CMA-
ES optimization algorithm was chosen to optimize the neural network. CMA-ES
being also noted CMA with ES standing for Evolution Strategy which is a fam-
ily of algorithms that is loosely based on biological evolution (hence the name).
Multiple Evolutionary algorithms exist and they are all based on the same ba-
sic steps of population generation, evaluation, selection and reproduction. The
CMA-ES has outperformed many algorithms in black box optimization prob-
lems [4]. That is why this algorithm has been chosen to tune PID controllers in
many cases with promising results [5] [6].

As seen in figure 1, the system is composed of a robot controlled by a PID
controller. The state of the robot is observed by an extended Kalman filter
(EKF). The EKF provides the state x̂ and the corresponding covariance matrix



P. The core concept of the document is to use the covariance matrix with the
corresponding error as inputs to a neural network which outputs the parameters
of the controller in real time.Both of the CMA-ES blocks are used to define and
optimize the neural network in order to adapt the behavior of the robot to the
level of uncertainty in the measurements.

Fig. 1. Control bloc diagram.

2 PID tuning using a neural network

The goal here is to find the optimal parameters KP ,KI and KD to control the
robot, by taking into consideration the error and the covariance matrix of the
EKF. A neural network is used because if offers both adaptability and efficiency.

2.1 PID controller

PID controllers are wildly used in the industry. This is due to their reliability
and simplicity. PID has shown to have good preferences in multiple cases [7].
The general formula for the PID controller is as follows:

C(t) = KP e(t) +KI

∫ t

0

e(τ) dτ +KD

d

dt
e(t) (1)

with e(t)=actual(t)-target(t)
KP ,KI and KD are the proportional, integral and derivative gains respectively.
Even thou the controller is easy to implement, the tuning of its parameters is not
a simple task and is a large area of research [8]. The three actions of proportional,
integral and derivative have different and some concurrent effects. For example,



the proportional term decreases the rise time while the derivative term increases
it, while both are essential for the stability of complex systems. This is the reason
of the difficulty of finding optimal gains.

2.2 Neural network

Neural networks are highly connected systems that are used to model complex,
non-linear functions.In a simple representation of a neural network, the outputs
of the each layer are multiplied by the weights and summed together with the
biases and passed through the activation functions. Activation functions are what
makes the system capable of modeling non-linear behavior, it can be represented
graphically by neurons.

A big part of the progress done in this area is due to the backpropagation
algorithm. This algorithm allows the neural network to learn patterns and desired
behaviors. However The backpropagation algorithm uses the gradient to optimize
the neural network. In this case, the gradient is not available, therefore the
backpropagation algorithm can not be used. 1

3 Neuroevolution

A neural network is used to find the optimal parameters to control the robot
efficiently, even with the presence of uncertainty. In traditional neural networks,
the backpropagation algorithm is used to update the weights and biases. Here,
an evolutionary algorithm is used instead. The choice was made because of the
need of exploration in our problem and because neuroevolution is a gradient free
method, which reduces execution time by orders of magnitude [2].

3.1 CMA-ES

The CMA-ES is an evolutionary algorithm [9]. it had been used because it out-
performed most black box optimization algorithms. The algorithm starts off by
generating a population of candidates. Those candidates are evaluated and put
in order of fitness. From the top preforming candidates, a percentage is selected
to regenerate the new population. The new population is again reevaluated and
the cycle continues until a termination condition is met. The termination condi-
tion is based on number of generations or the resemblance between parents and
offspring.

3.2 Objective function

The CMA-ES algorithm takes an objective function as an input, and has the
neural network parameters as outputs. the objective function is critical to the
performance of the optimization. In our case it will be set to take into consid-
eration the absolute error between the non noisy signals and the reference. In



other words, the CMA-ES will tweak the neural network parameters in order
to minimize the influence of the noise on the system. This is done to force the
neural network to learn to control the system based on the level of noise (EKF’s
covariance matrix).

4 Results and perspectives

Multiple implementations varying in complexity, were realized for this work. At
first a fix PID controller was optimized with the CMA-ES to adapt to fluctuations
in the precision of the perception. After this initial phase, a neural network was
used to tune a PID controller on line. The neural network was optimized by
CMA-ES. The architecture of the neural network was chosen by the user. One of
the latest Implementations describes the complete system, where both CMA-ES
blocks work to have an optimal system.

Fig. 2. Evolution of the objective function across generations. The size of the step
between generations is displayed in green, the change in the objective function in cyan
and the minimum objective function of each generation in blue. The red asterisk is the
overall minimum objective function found by CMA-ES [10].

In figure 2 we see the evolution of the objective function throughout the
generations. We notice that CMA-ES finds local optima but successfully over-
comes them until the fix number of function evaluations has been achieved. As
mentioned before the backpropagation algorithm can not be used. Therefore we
can not compare the training phase of the two algorithms to evaluate the perfor-
mance of the developed system. However we can evaluate the performance of the
developed system by comparing it to other controllers which are used in these
cases. These types of tests have been carried and showed promising results.
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Abstract. Independent component analysis (ICA) is a widely spread
data exploration technique, where observed signals are assumed to be
linear mixtures of independent components. Infomax, one of the first and
most used algorithms for inference of the latent parameters, maximizes a
log-likelihood function which is non-convex and decomposes as a sum over
signal samples. We introduce a new majorization-minimization framework
for the optimization of the loss function. We derive an online algorithm
for the streaming setting, and an incremental algorithm for the finite-sum
setting, which outperform the state-of-the-art on large scale problems.
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1 Motivation

In its classical and most widely spread form, ICA makes the assumption that a random
vector x ∈ Rp is a linear mixture of independent sources. It means that there exists a
source vector s ∈ Rp of statistically independent features and a mixing matrix A ∈ Rp×p,
such that x = As. The aim of ICA is to recover A from some realizations of x.

One of first and most employed ICA algorithm is Infomax [1]. It assumes that each
feature of s follows a given super-Gaussian distribution d. The likelihood of x given A
writes:

p(x|A) = 1

|det(A)|

p∏
i=1

d([A−1x]i). (1)

It is more convenient to work with the unmixing matrix W := A−1 and the negative
log-likelihood, yielding a cost function `(x,W ) := − log(p(x|W−1)):

`(x,W ) = − log|det(W )| −
p∑

i=1

log(d([Wx]i)) . (2)

The underlying expected risk is then:

L(W ) := Ex[`(x,W )] = − log|det(W )| −
p∑

i=1

E[log(d([Wx]i))] . (3)

Given a set of n i.i.d. samples of x, X = [x1, · · · ,xn] ∈ Rp×n, the empirical risk is:

Ln(W ) :=
1

n

n∑
j=1

`(xj ,W ) = − log|det(W )| − 1

n

p∑
i=1

n∑
j=1

log(d([WX]ij))] . (4)



This article focuses on the inference of W in two cases: the finite-sum setting, where W
is found by searching for a minimizer of Ln, and the online setting where a stream of
samples arriving one by one is considered. Infomax solves the finite-sum problem [2]
by using a stochastic gradient method. Unfortunately, Ln is not convex, hence it is
hard to find a good step-size policy which fits any kind of data. More recently, several
full-batch second-order algorithms have been derived for the exact minimization of
Ln [3]. Full-batch methods are robust and can show quadratic convergence speed, but
an iteration can take a very long time when the number of samples n is large.

We introduce a set of surrogate functions for `, allowing for a majorization-
minimization method. We derive incremental and online algorithms for this problem.
Through experiments, we observe that the proposed methods performs better than the
state-of-the-art, while enjoying the robust property of guaranteed decrease.

2 Surrogate functions

The density d is assumed symmetric and super-Gaussian in the sense that − log(d(
√
x))

is an increasing concave function over (0,+∞) [4]. Following [4], there exists a function
f such that:

G(y) := − log(d(y)) = min
u≥0

uy2

2
+ f(u), (5)

and the minimum is reached for an unique value denoted as u∗(y). We introduce a new
cost function ˜̀(x,W,u) where u ∈ Rp

+, which writes:

˜̀(x,W,u) := − log|det(W )|+ 1

2

p∑
i=1

ui [Wx]2i +

p∑
i=1

f(ui) , (6)

and the associated empirical risk, for U = [u1, · · · ,un] ∈ Rp×n
+ :

L̃n(W,U) :=
1

n

n∑
j=1

˜̀(xj ,W,uj) = − log|det(W )|+ 1

2n

p∑
i=1

n∑
j=1

Uij [WX]2ij+
1

n

p∑
i=1

n∑
j=1

f(Uij).

(7)Following Eq. (5), we have:

Lemma 1 (Majorization). Let W ∈ Rp×p. For any U ∈ Rp×n
+ , Ln(W ) ≤ L̃n(W,U),

with equality if and only if U = u∗(WX), that is, ∀i, j, Uij = u∗([WX]ij). Further, W
minimizes Ln if and only if (W,u∗(WX)) minimizes L̃n.

A natural algorithm relies on alternatively minimizing with respect to W and U . The
rest of the paper focuses on the minimization of L̃n rather than Ln.

3 Stochastic minimization of the loss function

Using an EM strategy, L̃n(W,U) is minimized by alternating descent moves in U and
in W .

3.1 M-step: Descent in W

Expanding [WX]2ij , the middle term in the new loss function (6) is quadratic in the
rows of W :

L̃n(W,U) = − log|det(W )|+ 1

2

p∑
i=1

Wi:A
iW>i: +

1

n

p∑
i=1

n∑
j=1

f(Uij) , (8)

where Wi: denotes the i-th row of W , and the Ai’s are p× p matrices given by:
Ai

kl :=
1
n

∑n
j=1 UijXkjXlj . (9)



Therefore, when U is fixed, with respect to W , L̃n is the sum of the log det function
and a quadratic term. It can be partially minimized in closed-form, with a multiplicative
update of one of its rows. Let i ∈ [1, p], and m ∈ Rp. DefineM ∈ Rp×p such thatM = Ip
except its i-th row which is equal to m. With respect to m, L̃n(MW,U) is of the form
− log(|mi|) + 1

2
mKm> where we define K = WAiW> ∈ Rp×p. This expression can

be minimized exactly by canceling the gradient, yielding:
m = ((K−1)ii)

−1/2(K−1)i: . (10)

3.2 E-step : Descent in U

When only one sample X:j = xj ∈ Rp is available, the operation U:j ← u∗(Wxj)
minimizes L̃n(W,U) with respect to the j-th row of U . As seen previously, we only need
to compute the Ai’s to perform a descent in W , hence one needs a way to accumulate
those matrices.

Incremental algorithm. To do so in an incremental way, a memory Umem ∈ Rp×n

stores the values of U . When a sample xj is seen by the algorithm, we compute
Unew

:j = u∗(Wxj), and update the Ai’s as:
Ai ← Ai + 1

T
(Unew

ij − Umem
ij )xjx

>
j . (11)

The memory is then updated by Umem
:j ← Unew

:j enforcing Ai = 1
n

∑n
j=1 U

mem
ij xjx

>
j at

each iteration.
Online algorithm. When each sample is only seen once, there is no memory, and

a natural update rule following [5] is:
Ai ← (1− ρ(n))Ai + ρ(n)Uijxjx

>
j , (12)

where n is the number of samples seen, and ρ(n) ∈ [0, 1] is a well chosen factor. Setting
ρ(n) = 1

n
yields the unbiased formula Ai(n) = 1

n

∑n
j=1 Uijxjx

>
j . A more aggressive

policy ρ(n) = 1
nα for α ∈ [ 1

2
, 1) empirically leads to faster estimation of the latent

parameters.

4 Discussion
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Fig. 1. Behavior of different algorithms on real data. Left and middle: finite sum
problem. Right: online problem.
Fig. 1 compares several algorithms and shows some convergence measures on a real
EEG dataset of size p = 30, n = 106. The proposed algorithms have the same cost per
iteration as SGD, and clearly outperform the state-of-the-art. Furthermore, to the best
of our knowledge, they are the first ICA algorithms that provably decrease the loss
function at each step.
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Celer: dual extrapolation for the Lasso
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Abstract. To accelerate solvers for `1-regularized problems, state-of-
the-art approaches consist in reducing the size of the optimization prob-
lem at hand. In the context of regression, this can be achieved either
by discarding irrelevant features (screening) or by prioritizing features
likely to be included in the support of the solution (working set). Dual-
ity comes into play at several steps in these techniques. We propose an
extrapolation technique in the dual that leads to the construction of an
improved dual point. This enables a tight control of the stopping crite-
rion, as well as better screening performance of Gap Safe rules. Finally,
we propose a working set strategy based on our new dual point, which
improves state-of-the-art time performance on the Lasso.

Keywords: Sparsity, Lasso, Duality, Acceleration

1 Motivation/Introduction

Following the seminal work on the Lasso/Basis Pursuit [Tibshirani, 1996, Chen and
Donoho, 1995], convex sparsity-inducing regularizations have had a major impact on
machine learning [Bach et al., 2012]. In machine learning applications, the default
method to optimize such problems is coordinate descent Fu [1998], Friedman et al.
[2010]. Since by design only a few features are included in the optimal solution (the
support), state-of-the-art techniques rely on limiting the size of the (sub-)problem to
consider. Various approaches can be distinguished: screening techniques [Wang et al.,
2013, Fercoq et al., 2015], following the seminal work of El Ghaoui et al. [2012], strong
rules [Tibshirani et al., 2012] or correlation screening [Xiang and Ramadge, 2012]. The
current state-of-the-art safe rules are so-called Gap Safe rules [Ndiaye et al., 2017] and
they rely on the estimation of the duality gap, which itself requires to know a good dual
optimal point. Alternatively, working sets(WS) techniques [Fan et al., 2008, Johnson
and Guestrin, 2015] select a subset of important features according to a particular
criterion, and approximately solve the subproblem restricted to these features. A new
subset is then defined, and the procedure is repeated. For WS, duality also comes into
play, both in the stopping criterion of the subproblem solver and in the WS definition.

2 Methods

The Lasso problem and its dual problem are:

β̂(λ) ∈ arg min
β∈Rp

1
2
‖y −Xβ‖2 + λ ‖β‖1︸ ︷︷ ︸

P(λ)(β)

, and θ̂(λ) = arg max
θ∈∆X

1
2
‖y‖2 − λ2

2

∥∥θ − y
λ

∥∥2︸ ︷︷ ︸
D(λ)(θ)

,



where λ > 0 controls the trade-off between data-fitting and regularization, and ∆X =
{θ ∈ Rn : ‖X>θ‖∞ ≤ 1} is the (rescaled) dual feasible set. The duality gap is defined
by G(λ)(β, θ) := P(λ)(β)−D(λ)(θ), for any pair (β, θ) ∈ Rp ×∆X .

Proposition 1. Strong duality holds for the Lasso, and θ̂(λ) = 1
λ

(y −Xβ̂(λ)) .

Because of Proposition 1, a canonical choice of dual point during coordinate descent
iterations (i.e., , corresponding to a sequence of iterates βt converging to β̂) is residuals
rescaling. It consists in choosing a dual feasible point proportional to the residual
rt := y −Xβt, see for instance Mairal [2010]: θtres := rt/max(λ, ‖X>rt‖∞) .

Building on the work on nonlinear regularized acceleration by Scieur et al. [2016],
we propose a better dual point. Instead of relying only on the last residual rt, we
extrapolate previous residuals rt, rt−1, rt−2, etc.

Definition 1 (Extrapolated dual). For a fixed number of iterations K = 5, let

rtaccel =


rt, if t ≤ K,
K∑
k=1

ckr
t+1−k, if t > K,

(1)

where c = (c1, . . . , cK)> ∈ RK is defined as c = z/z>1K , and z solves the linear system
(U t)>U tz = 1K with U t = [rt+1−K − rt−K , . . . , rt − rt−1] ∈ Rn×K . Then,

θtaccel := rtaccel/max(λ, ‖X>rtaccel‖∞). (2)

For iterations ≥ K, the K last values of the residuals are used to extrapolate the limit
of the sequence (rt), and this extrapolation is rescaled to provide a feasible dual point.

3 Results
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Fig. 1. Left: Duality gaps evaluated with θres and θaccel, along with the true subopti-
mality gap. Performance is measured for coordinate descent on the leukemia dataset,
for λ = λmax/20. Our gap quickly gets close to the true suboptimality, while the
canonical approach constantly overestimates it. Right: Number of variables discarded
by the Gap Safe rule as a function of CD epochs, depending on the dual point used, for
λ = λmax/5 (Finance dataset). Our better dual point helps to screen variables earlier.

Better dual point Figure 1 (Left) shows that θaccel gives a duality closer to the true
suboptimality gap than θres, meaning that the proposed construction is indeed better.



Improved screening The gap safe screening rule is: |x>j θ| < 1−‖xj‖
√

2
λ2 G(λ)(β, θ)⇒

β̂
(λ)
j = 0. Its performance depends strongly on how well θ approximates θ̂(λ). If the

duality gap is large, the left-hand side is small, resulting in fewer discarded features.
Figure 1 (Right) shows that θaccel helps discarding more features than θres, accelerating
CD solvers and achieving safe feature identification earlier.

Working sets Working set (WS) approaches involve two nested iteration loops: in the
outer one, a set of features Wt ⊂ [p] is defined. In the inner one, an iterative algorithm
is launched to solve the problem restricted to XWt (i.e., considering only the features
in Wt). We propose a WS construction based on an aggressive use of Gap Safe rules.

1e-02 1e-04 1e-06 1e-08
ε

0

500

1000

1500

pa
th

co
m

pu
ta

ti
on

ti
m

e
(s

)

Celer

Celer (prune)

Blitz

Fig. 2. Times to solve the Lasso path to precision ε for a grid of 100 λ’s, from λmax

to λmax/100. Celer outperforms the state-of-the-art package Blitz. Safe and prune
versions behave similarly.

As it appears in Gap Safe screening, the critical quantity measuring the importance

of feature j is dj(θ) :=
1−|x>j θ|

‖xj‖ , because dj(θ) >
√

2
λ2 G(λ)(β, θ) ⇒ β̂

(λ)
j = 0. Rather

than discarding feature j from the problem if dj(θ) is too large, twe create a WS with
the coordinates achieving the lowest dj(θ)’s values. A possibility would be to set r ∈]0, 1[
and creating a WS with features such that dj(θ) < r

√
2G(λ)(β, θ)/λ2. However, a pitfall

for this strategy is that the WS size is not explicitly under control: an inaccurate choice
of r leads to extremely large WS, and which limits the benefits. Instead, to achieve
a good control on the working set growth, we reorder the dj(θ)’s in a non-decreasing
way: djp(θ) ≥ · · · ≥ dj1(θ). Then, for a given working set size pt, we choose Wt =
{j1, . . . , jpt} . When subproblems are solved with the same precision ε as considered
for stopping the outer-loop and if the WS Wt grows geometrically (e.g., pt+1 = 2pt)
and monotonically (i.e., Wt ⊂ Wt+1), then convergence is guaranteed. Indeed, this
growth strategy guarantees that as long as the problem has not been solved up to
precision ε, more features are added, eventually starting the inner solver on the full
problem until it reaches an ε-solution. We also introduce an unsafe version, prune. The
initial WS size is set to p1 = 100. This avoids two common WS issues: working sets
growing one feature at a time, or too quickly. We have coined this strategy Celer
(Constraint Elimination for the Lasso with Extrapolated Residuals). Figure 2 shows
that it outperforms state-of-the-art Blitz [Johnson and Guestrin, 2015].

4 Discussion/Conclusion

We want to generalize Celer to sparse logistic regression and `1-regularized GLMs.
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Abstract. We study the problem of minimizing the average of a large
number of smooth convex functions with a convex regularizer. We pro-
pose and analyze a stochastic fixed point method which at each iteration
samples only a mini-batch of data points and updates a handful of pa-
rameters associated to features. In particular, our stochastic fixed point
method includes two well known method dfSDCA and Quartz as special
cases, thus our work unifies these two methods under one single frame-
work and proposes a more general setting which guarantees theoretically
the convergence of the optimal points in the ridge regression problem.
The work is concluded with numerical experiments in some more general
machine learning problems.

Keywords: stochastic fixed point relaxation method, Quartz, dfSDCA

1 Introduction

This paper is concerned with solve the following problem

min
x∈Rd

P (x)
def
=

1

n

n∑
i=1

φi(〈ai, x〉) + λg(x). (1)

In the context of machine learning, {ai}1≤i≤n are independent samples of an ob-
servation and x is a predictor. The function φi is the loss incurred by the predictor on
sample ai and is often referred to as the fidelity term, since it tells us how faithful the
predictor is in relation to the sample ai. The constant λ > 0 is a regularization param-
eter and the function g is a regularizer, chosen as to discourage complex solutions. In
machine learning, (1) is called the regularized empirical risk minimization problem. It
gets this name since it is often interpreted as an empirical estimation of an integral.
The setup (1) is also used to describe other applications outside of machine learning,
including many best-fit or regression problems. Here we are interested in case when
the number of samples n is very big, i.e. millions, billions, and much larger than the
dimension d of our predictor. That is, we are in a big data setting.

? rui.yuan@polytechnique.edu
?? gowerrobert@gmail.com

? ? ? olivier.fercoq@telecom-paristech.fr



We assume that the functions g and φi for all i = 1 . . . n are convex to guarantee
that the local minimum is the global minimum of the problem (1). We also assume that
g and φi are smooth to guarantee the existence of their derivatives. Thus, the minimum
(global or local) is the point x∗ such that ∇P (x∗) = 0. The classic algorithm to handle
these kinds of problem is the gradient descent method. From any initial point x0 at
time 0, the algorithm makes progress towards the solution at each iteration by taking
a step in the direction of the steepest descent. As the functions φi for all i = 1 . . . n are
smooth, the convergence of the algorithm is guaranteed.

We notice that at each iteration, we need to calculate the full gradient ∇P (xt) =
1
n

∑n
i=1 φ

′
i(
〈
ai, x

t
〉
)ai + λ∇g(xt), which means we need to go through all the samples

once at each single iteration. Not only the gradient descent method, all classic opti-
mization algorithms, such as Newton’s method or coordinate descent (go through one
single coordinate of each sample), have the same phenomenon. When the number of
data samples is huge, this leads to iterations which are too expensive. This is why SGD
(stochastic gradient descent) methods have become popular: at each iteration, the SGD
methods need only a single data sample ai to make progress towards the solution.

However, the SGD methods have a significant drawback, the iterates are now them-
selves stochastic and furthermore, the stochastic gradients have a high variance and
do not converge to zero when approximating the solution. Thus, a stepsize regime con-
verging to zero needs to be used in conjunction with SGD type methods. This stepsize
regime needs to be calibrated to each problem application, which is costly in both
time and the patience of the user. This issue has led to the development of stochastic
variance reduced methods that converge to the solution without needing to tune a step-
size regime. Here we follow the development of a particular type of stochastic variance
reduced method, by developing a family of stochastic fixed point type methods.

To describe this class of fixed point method, first note that the solution x∗ to (1)
satisfies

∇P (x∗) =
1

n

n∑
i=1

φ′i(〈ai, x∗〉)︸ ︷︷ ︸
def
=−α∗

i

ai + λ∇g(x∗) = 0,

which in turn is equivalent to solve the following equations for variables (α∗, x∗):

x∗ = ∇g−1(
1

λn
Aα∗) (2)

α∗i = −φ′i(a>i x∗), for i = 1, . . . , n. (3)

where A = [a1, . . . , an] ∈ Rd×n and ∇g−1 is the operator such that ∇g−1 ◦ ∇g = id,
which exists due to the convexity of g. As (2) and (3) are sufficient conditions for
optimality, we now refer to them as the optimality conditions.

Since our optimality conditions are now a fixed point equation, we can apply fixed
point methods. We adapt a standard relaxed fixed point method to an equivalent
stochastic reformulation of our optimality conditions. As in SGD, we select randomly
one sample at each iteration to update variables. The state-of-the-art optimization
algorithms applying this type of method are Quartz [2] and dfSDCA [3] that we will
resume briefly in Section 2. However, they have different visions of parameters setting.
Our objective is to analyze the possibility of getting a more general choice of parameters
for this kind of methods and develop variant methods from the fixed point method to
improve the convergence rate.



2 Objectives

A natural fixed point strategy for finding a solution to the fixed point equations (2)
and (3) is, from a given x0, α0

i for i = 1, . . . , n, to iterate alternatively apply the two
equations (2) and (3) at each step, i.e. we do a fixed-point iteration. However, this
method tends to be divergent if the iterated operator is not a contraction which is
usually the case. So we can not apply the Banach Fixed Point Theorem. Besides, the
method is costly since it requires a full sweep through the data at each iteration. To
guarantee the convergence, and simultaneously keep the cost of each iteration low,
we will use relaxation parameters θ, γi ∈ (0, 1] for i = 1, . . . , n, and we will select
one sample i ∈ {1, . . . , n} from a distribution D. The resulting Stochastic fixed point
relaxation method is given by

αt+1
i = (1− γi)αti − γiφ′i(

〈
ai, x

t〉), for selected i, where i ∼ D (4)

xt+1 = (1− θ)xt + θ∇g−1

(
1

λn
Aαt

)
. (5)

If we replace αti and αt+1
i by α∗i , x

t and xt+1 by x∗ in the above update, we obtain
then the same fixed points solutions of equations (2) and (3). This is because that
equations in (4) and (5) are the convex combination of the identity and the solution
expression in equations (2) and (3). So we still apply a fixed-point iteration, but for
equations (4) and (5). Intuitively, if we choose good relaxation parameters θ and γ, the
iterated operator can be contractive. So the algorithm will converge.

We notice that if θ and γ are closed to zero, the iterated operator can be contractive.
However, θ and γ are considered as the step size of the update. So we need θ and γ to
be as big as possible, i.e. closed to one, so that the algorithm will converge as fast as
possible. Hence, the trade-off between contraction and convergence rate leads to the
optimal relaxation parameters θ∗ and γ∗.

The Quartz [2] and the dfSDCA [3] methods are both instantiations of the stochas-
tic fixed point relaxation method. For the Quartz, we take γi = θ

pi
∈ (0, 1] with pi the

probability of sample i being selected. The optimal setting is that, p∗i = L‖ai‖2+λn∑n
i=1(L‖ai‖2+λn)

and θ∗ = λn∑n
i=1(L‖ai‖2+λn)

where φi is L−smooth for i = 1 . . . n. For the dfSDCA, we

take θ = 1 and γi = ηλn ∈ (0, 1] for all i with i following the uniform sampling.
The optimal setting takes η = 1

L+λn
with L the smooth constant for all the functions

φi. However, the proof of the convergence of these methods rely on different proof
techniques and different conditions. In addition, the choice of parameters is limited in
the sense that the parameter γi needs to be proportional to 1/pi, same case in the
dfSDCA in considering pi = 1/n for the uniform sampling. In this paper, we analyze
this class of methods for a specific problem - the ridge regression problem and prove
the convergence of the method with a setting of parameters which has more freedom
than the one of Quartz and dfSDCA. The proof is inspired by the analyze of [1].
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Abstract. This work presents an analysis leading to the optimal mini-
batch size for SAGA, a recent stochastic variance reduced method used
for training many machine learning models without tuning any stepsize
parameter. This study is based on the recent JacSketch framework, which
unifies several stochastic variance reduced methods for different type of
sampling. Analyzing the total complexity of this SAGA optimization
method leads us to an approximation of the optimal mini-batch size.

Keywords: Empirical risk minimization, Stochastic variance reduced methods,
Stochastic average gradient descent, Optimal mini-batch

1 Context and motivation

The empirical risk minimization problem often arises when training classical machine
learning models. Today, gigantic datasets (sometimes several terabytes) from Internet,
images or text, are used to train machine learning algorithms, such as logistic regression
for classification or conditional random fields. Thus, one cannot perform the required
minimization by computing a full gradient descent (GD) because it would be too costly.

In order to address this issue and solve such problems efficiently, the optimization
community has revived an old method from the 1950’s, the stochastic gradient descent
(SGD) method [1]. SGD has established itself as a reference method for minimizing
the empirical risk thanks to its scalability. Yet, in order to converge one has to tune a
problem dependent stepsize sequence which often leads to suboptimal results.

This last issue has been tackled by the recent development of stochastic variance
reduced gradient methods, which do not require any stepsize tuning to ensure conver-
gence, like SAG/SAGA [2,3]. Theses methods keep an estimate of the gradient and
update it using only a randomly subsampled set of the data at each iteration. This size
of this subsampled set is referred to as the mini-batch size. The idea of mini-batching
lies in the fact that, at each iteration, the gradient computed on a subsampled dataset
randomly picked might be a good trade-off between a stochastic gradient, computed
at a single random point, and the full gradient, computed over all the dataset. This
question could be addressed for SGD too, but in this work we only focus on stochastic
variance reduced gradient methods.

Though ensuring linear convergence and relieving the user of this stepsize tuning,
one still has to set the mini-batch parameter. The aim of this project is to determine an
approximation of the mini-batch size for SAGA by minimizing the total complexity of
the optimization algorithm. To that end, we extend the mini-batching and complexity
studies of the recent JacSketch [4] methods, which include mini-batch SAGA.



2 Methods

Authors of [4] computed the iteration complexity for mini-batch SAGA sketches (if
one uses the right stepsize). Since each step of mini-batch SAGA computes τ stochas-
tic gradients, the total complexity is τ times the iteration complexity which we note
Ktotal(τ). Theorem 3.6 & Theorem 4.19 of [4] imply that, in the case of mini-batch
SAGA with τ -nice (uniform sampling without replacement of mini-batch of size τ), the
total complexity boils down to

Ktotal(τ) = max

{
4τ(L1 + λ)

µ
, n+

n− τ
n− 1

4(Lmax + λ)

µ

}
log

(
1

ε

)
, (1)

where L1 denotes the expected smoothness constant, which measures how smooth the
expected stochastic gradient is, µ is the strong convexity parameter and Lmax the
largest smoothness constant of the individual subsampled functions.

So, our goal is to find the optimal τ that minimizes this total complexity of the
optimization method. Unfortunately, the computation of the expected smoothness con-
stant L1 turns out to be intractable for large n because it requires browsing all the
τ -combinations from n. By finding upper bounds of L1, we show that Ktotal(τ) is
bounded by K̂total(τ), the maximum of two computable terms g(τ) and h(τ). These
terms g(τ) and h(τ) can be expressed as functions of several smoothness constants
and other parameters of the minimization problem, such as the n or d. In Figure 1 we
present one of our total complexity bounds for a traditional SAGA method with τ -nice
sampling.

Thus, a preliminary work before studying the minimization of the total complexity
is to find an upper bound of L1. To get the sharpest bounds, several tools are used
such as properties of the smoothness constants or matrix concentration inequalities [5],
which give us more insight on how the sampling randomness affects the bound, and
thus the complexity.

We already succeeded to find an explicit value of the mini-batch size for SAGA
with τ -nice sampling. In this case, computing the optimal τ boils down to finding the
intersection of two linear functions as shown in Figure 1.

3 Experiments

With experiments solving ridge regression, we aim to estimate how tight are our upper
bounds of the expected smoothness constant L1 and how accurate is our estimate of
the optimal mini-batch size τ̂∗. We run simulations on both artificially generated data
(gaussian and diagonal features matrices A = [a1, . . . , an]) and real data from LIBSVM
datasets (abalone, housing) from [7].

Depending on the structure of the feature matrix A, one can see emerging some
regimes of τ for which one particular bound is sharper than the others. Those experi-
ments also clearly show that a heuristic ’bound’ we introduce almost overlaps with the
true L1. Much in-depth experiments are in progress to determine whether our differ-
ent estimates of the optimal mini-batch size are close to its empirical value. Because
we upper bound L1, one can think that our method might underestimate the optimal
value of τ . Indeed, looking jointly at (1) and Figure 1 clarifies this idea: having a loose
upper bound of L1 is equivalent to shifting up the g curve and leads to a left shift of
the optimum.



Fig. 1: Outline of the optimal mini-batch size τ̃ for SAGA with identity weights.

4 Conclusion and future work

In this work, we proposed to minimize the total complexity of stochastic variance
reduced methods, such as SAGA, in order to determine the optimal mini-batch size.
We succeeded to get explicit estimates of the mini-batch size for SAGA with τ -nice
sampling by minimizing an upper bound of the complexity.

Sharper results are also proved through matrix concentration inequalities and nu-
merical experiments are in progress to see if our optimal mini-batch estimates do im-
prove the convergence of stochastic variance reduced gradient methods. The analysis
could also be extended for another well-known stochastic variance reduced method, the
SVRG [6] method, but we leave it for later work.
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Automated extraction of food-drug interactions
from scientific articles
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Abstract. In this paper, we are interested in the extraction of food-drug interac-
tions (FDI), a task which is similar to the extraction of relation between terms in
specialized texts. We present a supervised classification method and the results
of a first set of experiments. Despite the imbalance of classes, the results are en-
couraging. We have identified the most relevant classifiers according to the steps
of our method. We have also observed the important impact of the semantic tags
of terms used as features.

Keywords: Food-Drug Interaction, Semantic relation, Specialized corpora, Supervised learning

1 Introduction/Motivation

Although knowledge bases (KB) or terminologies exist in specialized domains, updating this in-
formation often requires to access unstructured data such as scientific literature. The problem
occurs deeply when focusing on a new type of knowledge which has no recording in termino-
logical resources yet. Thus, while drug interactions [1] or drug adverse effects [2] are listed in
databases such as DrugBank 1 or Theriaque 2, other information such as food drug interactions
is barely listed in KB, mainly sparsed in the scientific literature and recorded in textual form.
However food-drug interactions correspond to various types of adverse drug effects and lead to
harmful consequences on the patients health and well-being. We focus on extracting these inter-
actions as a relation acquisition task given the references to a food and a drug.

In this article3, our experiments rely on the extraction method in a single sentence as proposed
by [6] using approach in [4] to form instances: all couples food-drug, food supplement-drug or
food-side effect appearing in the same sentence are extracted to form positive instances if they
are in relation and negative otherwise. Then we define a two-step method: detection of relevant
relations and classification as proposed by [3]. As in [9], we have not explicitly introduced hand-
crafted features. Instead, we followed the logic of [7] to generalize the named entities replacing
them with their semantic tag. Among the five classifiers we have experimented, four are men-
tioned in the state of the art: a linear SVM and decision tree [4], a Bayesian classifier [8], and
a multilayer perceptron [9] and the last one is a logistic regression classifier. We compare the
performance of these classification algorithms with default parameters provided by Scikit-Learn4

When mining scientific article abstracts, we face several difficulties: (1) drug and food occur-
rences are very variable. Drug mentions are the international non proprietary name or the active
drug substances. Foods may be reference to a particular nutrient, food component or family; (2)
interactions are described in a rather precise way in the texts. It leads to a limited number of
examples; (3) interactions are heterogeneously annotated in an unbalanced learning set. Our con-
tribution are: (1) the selection of relevant sentences for food-drug interaction, (2) the classification
of positive relations.

1 https://www.drugbank.ca/
2 http://www.theriaque.org
3 This work was supported by the ANR through the grant ANR-16-CE23-0012 (MIAM project).
4 http://scikit-learn.org/stable/



2 Experiments

2.1 Data

Our data consists of 2,341 positive instances and 25,231 negative instances extracted on 639
abstracts of scientific articles collected from the PubMed portal by the query: (FOOD DRUG
INTERACTIONS”[MH] OR ”FOOD DRUG INTERACTIONS*” ) AND (”adverse effects*”)
annotated with Brat. The corpus collection process and annotation scheme are detailed in [5].
Positive instances are categorized into 21 types of relation but we have grouped these relations
into 4 groups: no relation, direct food-drug interaction (349 instances), drug adverse effect (1,242
instances), relation without precision (724 instances). Then we vectorized these sentences based
on word counting: each sentence is represented by a vector corresponding to the number of oc-
currences of each word of the whole vocabulary in the sentence.

2.2 Evaluation and features

We evaluate our models using F1-score from 10-fold cross-validation. F1-score (F1) is the har-
monic average of the precision (P) and recall (R) such that

F1 = 2. P ∗ R
P + R

P = correct positive results
all positive results

R = correct positive results
all returned results

To train our models, we used four sets of features:

1. Inflected form of words (word form as it occurs in text)
ex: Bioavailability enhancement by grapefruit juice noted with dihydropyridine calcium
antagonists does not occur with amlodipine.

2. Inflected form of words and terms (i.e. the noun phrases conveying specialized concepts)
followed by their semantic tag
ex: Bioavailability enhancement by grapefruit juice /food/ noted with dihydropyridine cal-
cium antagonists /drug/ does not occur with amlodipine.

3. Generalization of terms with their semantic tag without losing information about the entities
ex: Bioavailability enhancement by food noted with drug does not occur with amlodipine.

4. Normalization of the arguments of the relations (replaced by arg1 and arg2)
ex: Bioavailability enhancement by arg1 noted with arg2 does not occur with amlodipine.

(a) Step 1: Binary classification (b) Step 2: Multi-class classification

Fig. 1: F1-score on 10-fold cross



3 Results

Step 1 : Binary classification. Figure 1a presents the results obtained to identify the sentences
containing relevant relations. Depending on the descriptors used, F1-score varies between 0.54
and 0.71. Best results are obtained with decision trees and perceptron (MLP) using semantic tags.

Step 2 : Multi-class classification. Figure 1b presents the results obtained when recognizing
group of relations. As in the previous step, the use of semantic tags of terms has a positive impact
on the results. Among the models used, the Naive Bayes classifier is the one leading to the weakest
results. We also obtain good results with Logistic Regression, Decision Tree and linear SVC.

4 Conclusion and future work

We propose a first step towards the extraction of food-drug interaction. These first experiments
show that features including semantic tags lead to best results. As perspectives, we will pursue
the next two steps of our method: (1) recognition of the various types of relations and (2) identifi-
cation of related entities (food, medicine, disease, etc.). The preliminary results presented in this
article need to be improved. We are considering the use of other classification methods such as
convolutional deep neural networks using word embedding. We also want to study the impact of
other descriptors (word lemmas, part-of-speech tags, syntactic relations, semantic tags of terms
with different levels of granularity, etc.) or sampling methods to reduce the imbalance of the data.
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Abstract. Dietary guidelines provided by public health agencies have
not been very successful so far, as most people do not comply with nu-
tritional recommendations. Several reasons can contribute to this phe-
nomenon. First, dietary guidelines are generic: they do not take into
account personal preferences or constraints. Second, usually, they bear
on single categories and food items, advising to promote, limit, or sub-
stitute foods for others without considering that food items are rarely
consumed alone but are eaten as part of structured meals. Our objective
is to find clusters of consumers with regards to their consumption data.
We propose a novel approach to describe users consumption data. Clas-
sical clustering methods can then be used in order to identify subgroups
of consumers.

Keywords: user modelling, eating behavior, Doc2Vec

1 Motivation

Most chronic diseases such as diabetes, obesity and cardiovascular diseases are corre-
lated to unhealthy eating habits [9]. Public health agencies created dietary guidelines
targeted to the general population to help people to adopt healthier eating habits. How-
ever the compliance to the dietary guidelines are relatively low although the awareness
about food based dietary guidelines is rather good [3]. Several causes contribute to
this phenomenon: cultural and personal preferences, difficulty of implementing dietary
changes, availability and price of food items [7]. Nutritionists stress the fact that it is es-
sential to understand consumers’ eating behavior in order to make practical food-based
recommendations because making changes is challenging [1].

User modeling is defined as the creation of a representation of the user for the
purpose of customization [10]. It is crucial to understand the application area in order
to find measurable properties of a behavior. In nutrition, dietary behavior is modeled
using two main types of methods: theoretical ones and empirical ones. We only focus
on empirical ones as our goal is to learn dietary behaviors based on consumption data.
The main approach consists in applying PCA on the matrix of food item occurrences.
The literature in this domain is unclear about which method to choose as existing ex-
periments are not easily reproducible. Moreover, it has been noted that in the scenario
where users should use a nutrition recommender system, more complex information
would be needed [8].



User profiling is often used for personalization as it is required to analyze users’
behavior for adapting the recommendations [2]. Most of the time, user profiling consists
in finding an embedding space appropriate for the application. In our application case,
we want to create a representation of users based on their consumption data in order
to discover eating behaviors.

We propose two methods to describe users’ consumption data: a food item based
approach and a meal based approach. These two approaches rely on two hypotheses
about eating behavior. The item based approach relies on the hypothesis that an eating
behavior is represented by the occurrence of consumption of food items during a given
amount of time. However, this approach aggregates too much information and may not
be sufficient for describing eating behaviors. The meal based approach describes users
based on the meals they have consumed. Indeed, the way that people compose their
meals may be an indicator of eating behavior.

2 Our approach

Dietary data is collected with consumption diaries in which users write down every item
they have eaten. For instance, the user U1 ate lunch m1 = {soup, rice, beans, tiramisu}.
Data are collected during one week.

The food item approach consists in representing a user by a vector of occurrence
of food items and applying a matrix factorization algorithm such as PCA or NMF. It
infers a latent space in which users are represented. Then any clustering algorithm is
applied for discovering subgroups of users. This is the state of the art regarding user
profiling for eating behavior.

However in the food item approach, the fact that food items are consumed with
other food items is not taken into account. A meal based approach can provide extra
information for clustering users as the way people structure their meals may be a better
modelisation for closeness in eating behaviors. In this approach, users are described by
meals (i.e sets of food items). This representation raises the question of the distance
to be used for clustering. Clustering requires a distance between meals, i.e a distance
defined between sets of items. However, there is no trivial way of computing such a
distance as there is no distance defined between food items.

We overcome this limitation by considering each meal as a short text. NLP methods
can then be applied for learning a document embedding for meals. It is then possible
to compute distances between meals, i.e a mapping that converts documents into vec-
tors. For this purpose, we use a popular algorithm for learning document embedding,
Doc2Vec developed by Le and Mikolov in [5] as an extension of Word2Vec [6].

Doc2Vec is an algorithm that learns an embedding for documents. It is a neural
network with a single hidden layer of which the task is a prediction task. Doc2vec is
proposed with two flavors: DBOW (Distributed bag of words) and DMPV (Distributed
Memory Paragraph Vector). DBOW is a simpler model in which the word order is
ignored whereas DMPV is more complex as more parameters are learned. In our case,
the word order in the declared meals is meaningless as participants were not asked
to write down the food items in the order they ate them. Hence, we chose to use the
DBOW version of the algorithm. Besides, it has been shown that DBOW outperforms
DMPV[4] on similar tasks.

After applying Doc2Vec on meals, a user is represented as a set of points in the
meal space. As a first approach, we choose to compute the mean of those points for the



description of users. Traditional clustering methods will be applied using the cosine
distance.

3 Conclusion

We introduce a novel approach for describing users’ food consumption data and will
compare it with the method in the state of art. The results of clustering based on the
meal approach can give a finer insight about the different consumption styles from a
nutrition point of view but also for personalized recommendation purposes (e.g collab-
orative filtering).
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